Barrales-Martínez César, Durán Rocío, Jaque Pablo
Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, Universidad de Talca, Campus Talca, Talca, Chile.
Facultad de Ingeniería, Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de Talca, Campus Talca, Talca, Chile.
J Mol Model. 2024 Sep 30;30(10):355. doi: 10.1007/s00894-024-06161-2.
This study investigates the energetic and polarizability characteristics of three 1,3-dipolar cycloaddition reactions between diazene oxide and substituted ethylenes, focusing on the transition from synchronous to asynchronous mechanisms. Synchronicity analysis, using the reaction force constant, indicates that the bond evolution process becomes increasingly decoupled as the number of cyano groups increases. Polarizability analysis reveals that isotropic polarizability reaches its maximum near the transition state in all cases, while anisotropy of polarizability shifts from the transition state toward the product direction as asynchronicity increases. The larger the shift, the more asynchronous the mechanism, as reflected by the weight of the transition region. A detailed examination of the parallel and perpendicular polarizability components to the newly formed sigma bonds shows that the evolution of the parallel component is closely aligned with the energetic changes along the reaction coordinate, particularly in the synchronous reaction. We have also identified a relationship between the displacement in the maximum state of the parallel component from the transition state and the synchronicity of the mechanism. The larger the displacement, the more asynchronous the mechanism. These findings suggest that asynchronous 1,3-dipolar cycloaddition mechanisms are characterized by a decoupling of isotropic and anisotropic polarizabilities and a shift in the maximum polarizability state of the parallel component toward the product direction.
Density functional theory calculations were performed at the B3LYP/6-311 + + G(d,p)//B3LYP/6-31G(d,p) level of theory. The polarizability was calculated at each point of the reaction path, obtained using the intrinsic reaction coordinate method, as implemented in Gaussian 16.
本研究考察了重氮氧化物与取代乙烯之间三个1,3 -偶极环加成反应的能量和极化率特征,重点关注从同步机制到异步机制的转变。使用反应力常数进行的同步性分析表明,随着氰基数量的增加,键演化过程的解耦程度越来越高。极化率分析显示,在所有情况下,各向同性极化率在过渡态附近达到最大值,而随着异步性增加,极化率的各向异性从过渡态向产物方向移动。移动越大,机制的异步性越强,这由过渡区域的权重反映出来。对新形成的σ键的平行和垂直极化率分量的详细研究表明,平行分量的演化与沿反应坐标的能量变化密切相关,特别是在同步反应中。我们还确定了平行分量的最大状态相对于过渡态的位移与机制的同步性之间的关系。位移越大,机制的异步性越强。这些发现表明,异步1,3 -偶极环加成机制的特征是各向同性和各向异性极化率的解耦以及平行分量的最大极化率状态向产物方向的移动。
在B3LYP/6 - 311++G(d,p)//B3LYP/6 - 31G(d,p)理论水平上进行密度泛函理论计算。极化率在反应路径的每个点进行计算,反应路径使用高斯16中实现的内禀反应坐标方法获得。