Barrales-Martínez César, Gutiérrez-Oliva Soledad, Toro-Labbé Alejandro, Pendás Ángel Martín
Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago, Chile.
Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.
Chemphyschem. 2021 Oct 5;22(19):1976-1988. doi: 10.1002/cphc.202100428. Epub 2021 Aug 19.
The analysis of the reaction force and its topology has provided a wide range of fruitful concepts in the theory of chemical reactivity over the years, allowing to identify chemically relevant regions along a reaction profile. The reaction force (RF), a projection of the Hellmann-Feynman forces acting on the nuclei of a molecular system onto a suitable reaction coordinate, is partitioned using the interacting quantum atoms approach (IQA). The exact IQA molecular energy decomposition is now shown to open a unique window to identify and quantify the chemical entities that drive or retard a chemical reaction. The RF/IQA coupling offers an extraordinarily detailed view of the type and number of elementary processes that take reactants into products, as tested on two sets of simple reactions.
多年来,对反应力及其拓扑结构的分析在化学反应性理论中提供了一系列富有成果的概念,使得能够沿着反应路径识别化学相关区域。反应力(RF)是作用于分子系统原子核上的赫尔曼 - 费曼力在合适反应坐标上的投影,使用相互作用量子原子方法(IQA)进行划分。现在表明,精确的IQA分子能量分解为识别和量化驱动或阻碍化学反应的化学实体打开了一扇独特的窗口。如在两组简单反应上所测试的,RF/IQA耦合提供了关于将反应物转化为产物的基本过程的类型和数量的极其详细的视图。