Suppr超能文献

通过异质结构设计和引入电活性聚合物涂层实现钠离子电池的超高循环寿命阳极。

Realizing Ultrahigh Cycle Life Anode for Sodium-Ion Batteries through Heterostructure Design and Introducing Electro Active Polymer Coating.

作者信息

Guo Huanhuan, Wang Haihong, Ma FengXin, Lan Jinle, Yu Yunhua, Yuan Haocheng, Yang Xiaoping

机构信息

State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China.

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 9;16(40):54028-54037. doi: 10.1021/acsami.4c13139. Epub 2024 Sep 30.

Abstract

BiS has attracted increasing attention in sodium-ion batteries (SIBs) for its high theoretical capacity and low discharge platform. However, the sodium storage performance of BiS is limited by poor electrical conductivity and volume expansion during cycling. Herein, we report a special polypyrrole (PPy)-coated MoS/BiS (MBS@PPy) heterostructure composite obtained by hydrothermal reaction as an anode material for SIB. As a result, the MBS@PPy composites demonstrate exceptional electrochemical performance in SIB, exhibiting a high capacity of 361.1 mA h g at 10 A g and showcasing remarkable rate performance. Even under a high current density of 35 A g, the specific capacity remains stable at 280 mA h g after 2,000 cycles. Furthermore, a successfully assembled NaV(PO)//MBS@PPy sodium-ion full cell can achieve an impressive specific capacity of approximately 400 mA h g after 300 cycles at 0.5 A g. In MBS@PPy composites, the polypyridine coating not only improves the interfacial conductivity of nanorods but also effectively inhibits the agglomeration between nanorods due to large volume changes. The MoS heterostructure further inhibits the coarsening of the internal structure, improves electron transport and reaction kinetics, and increases the rate capability of the material. This work provides an effective strategy to develop energy storage materials with superior electrochemical properties.

摘要

由于其高理论容量和低放电平台,BiS在钠离子电池(SIBs)中受到越来越多的关注。然而,BiS的储钠性能受到循环过程中电导率差和体积膨胀的限制。在此,我们报道了一种通过水热反应获得的特殊的聚吡咯(PPy)包覆的MoS/BiS(MBS@PPy)异质结构复合材料,作为SIB的负极材料。结果,MBS@PPy复合材料在SIB中表现出优异的电化学性能,在10 A g下具有361.1 mA h g的高容量,并展现出卓越的倍率性能。即使在35 A g的高电流密度下,经过2000次循环后比容量仍稳定在280 mA h g。此外,成功组装NaV(PO)//MBS@PPy钠离子全电池在0.5 A g下经过300次循环后可实现约400 mA h g的令人印象深刻的比容量。在MBS@PPy复合材料中,聚吡啶涂层不仅提高了纳米棒的界面电导率,而且由于大的体积变化有效地抑制了纳米棒之间的团聚。MoS异质结构进一步抑制了内部结构的粗化,改善了电子传输和反应动力学,并提高了材料的倍率性能。这项工作为开发具有优异电化学性能的储能材料提供了一种有效策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验