Suppr超能文献

利用快速家庭检测的调查数据追踪 COVID-19 感染。

Tracking COVID-19 Infections Using Survey Data on Rapid At-Home Tests.

机构信息

Machine Intelligence Group for the Betterment of Health and the Environment, Northeastern University, Boston, Massachusetts.

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Cambridge, Massachusetts.

出版信息

JAMA Netw Open. 2024 Sep 3;7(9):e2435442. doi: 10.1001/jamanetworkopen.2024.35442.

Abstract

IMPORTANCE

Identifying and tracking new infections during an emerging pandemic is crucial to design and deploy interventions to protect populations and mitigate the pandemic's effects, yet it remains a challenging task.

OBJECTIVE

To characterize the ability of nonprobability online surveys to longitudinally estimate the number of COVID-19 infections in the population both in the presence and absence of institutionalized testing.

DESIGN, SETTING, AND PARTICIPANTS: Internet-based online nonprobability surveys were conducted among residents aged 18 years or older across 50 US states and the District of Columbia, using the PureSpectrum survey vendor, approximately every 6 weeks between June 1, 2020, and January 31, 2023, for a multiuniversity consortium-the COVID States Project. Surveys collected information on COVID-19 infections with representative state-level quotas applied to balance age, sex, race and ethnicity, and geographic distribution.

MAIN OUTCOMES AND MEASURES

The main outcomes were (1) survey-weighted estimates of new monthly confirmed COVID-19 cases in the US from January 2020 to January 2023 and (2) estimates of uncounted test-confirmed cases from February 1, 2022, to January 1, 2023. These estimates were compared with institutionally reported COVID-19 infections collected by Johns Hopkins University and wastewater viral concentrations for SARS-CoV-2 from Biobot Analytics.

RESULTS

The survey spanned 17 waves deployed from June 1, 2020, to January 31, 2023, with a total of 408 515 responses from 306 799 respondents (mean [SD] age, 42.8 [13.0] years; 202 416 women [66.0%]). Overall, 64 946 respondents (15.9%) self-reported a test-confirmed COVID-19 infection. National survey-weighted test-confirmed COVID-19 estimates were strongly correlated with institutionally reported COVID-19 infections (Pearson correlation, r = 0.96; P < .001) from April 2020 to January 2022 (50-state correlation mean [SD] value, r = 0.88 [0.07]). This was before the government-led mass distribution of at-home rapid tests. After January 2022, correlation was diminished and no longer statistically significant (r = 0.55; P = .08; 50-state correlation mean [SD] value, r = 0.48 [0.23]). In contrast, survey COVID-19 estimates correlated highly with SARS-CoV-2 viral concentrations in wastewater both before (r = 0.92; P < .001) and after (r = 0.89; P < .001) January 2022. Institutionally reported COVID-19 cases correlated (r = 0.79; P < .001) with wastewater viral concentrations before January 2022, but poorly (r = 0.31; P = .35) after, suggesting that both survey and wastewater estimates may have better captured test-confirmed COVID-19 infections after January 2022. Consistent correlation patterns were observed at the state level. Based on national-level survey estimates, approximately 54 million COVID-19 cases were likely unaccounted for in official records between January 2022 and January 2023.

CONCLUSIONS AND RELEVANCE

This study suggests that nonprobability survey data can be used to estimate the temporal evolution of test-confirmed infections during an emerging disease outbreak. Self-reporting tools may enable government and health care officials to implement accessible and affordable at-home testing for efficient infection monitoring in the future.

摘要

重要性

在新出现的大流行期间识别和跟踪新感染病例对于设计和部署保护人群和减轻大流行影响的干预措施至关重要,但这仍然是一项具有挑战性的任务。

目的

描述非概率在线调查在有和没有制度化检测的情况下,对人群中 COVID-19 感染数量进行纵向估计的能力。

设计、地点和参与者:在 2020 年 6 月 1 日至 2023 年 1 月 31 日期间,使用 PureSpectrum 调查供应商,在 50 个美国州和哥伦比亚特区的 18 岁或以上的居民中进行了基于互联网的非概率在线非概率调查,这是一个多大学联盟——COVID States Project。调查收集了有关 COVID-19 感染的信息,应用了具有代表性的州级配额,以平衡年龄、性别、种族和民族以及地理分布。

主要结果和措施

主要结果是(1)从 2020 年 1 月到 2023 年 1 月,美国每月新确诊 COVID-19 病例的调查加权估计值,以及(2)从 2022 年 2 月 1 日到 2023 年 1 月 1 日,未经检测确认的病例的估计值。这些估计值与约翰霍普金斯大学收集的机构报告的 COVID-19 感染数据以及 Biobot Analytics 的 SARS-CoV-2 废水病毒浓度进行了比较。

结果

该调查跨越了 17 个波次,从 2020 年 6 月 1 日持续到 2023 年 1 月 31 日,总共有来自 306799 名受访者(平均[SD]年龄,42.8[13.0]岁;202416 名女性[66.0%])的 408515 个回复。总体而言,有 64946 名受访者(15.9%)自我报告了经检测确认的 COVID-19 感染。全国性的调查加权检测确认 COVID-19 估计值与 2020 年 4 月至 2022 年 1 月期间机构报告的 COVID-19 感染数据(Pearson 相关系数,r=0.96;P<0.001)高度相关(50 州相关系数均值[SD]值,r=0.88[0.07])。这是在政府主导的大规模分发家用快速检测之前。2022 年 1 月后,相关性减弱,不再具有统计学意义(r=0.55;P=0.08;50 州相关系数均值[SD]值,r=0.48[0.23])。相比之下,在 2022 年 1 月之前和之后,调查 COVID-19 估计值与污水中的 SARS-CoV-2 病毒浓度高度相关(r=0.92;P<0.001)。机构报告的 COVID-19 病例与污水中的病毒浓度在 2022 年 1 月之前(r=0.79;P<0.001)相关,但在 2022 年 1 月之后相关性较差(r=0.31;P=0.35),这表明调查和污水估计值可能在 2022 年 1 月之后更好地捕捉了经检测确认的 COVID-19 感染。在州一级观察到了一致的相关模式。基于全国性的调查估计值,在 2022 年 1 月至 2023 年 1 月期间,官方记录中可能有 5400 万例 COVID-19 病例未被记录。

结论和相关性

这项研究表明,非概率调查数据可以用于估计在新出现的疾病爆发期间经检测确认的感染的时间演变。自我报告工具可能使政府和医疗保健官员能够在未来实施可及且负担得起的家庭检测,以进行有效的感染监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0187/11443354/8ac961d53b41/jamanetwopen-e2435442-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验