Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States.
J Am Chem Soc. 2024 Oct 9;146(40):27622-27643. doi: 10.1021/jacs.4c09073. Epub 2024 Sep 30.
Lysine acylations are ubiquitous and structurally diverse post-translational modifications that vastly expand the functional heterogeneity of the human proteome. Hence, the targeted acylation of lysine residues has emerged as a strategic approach to exert biomimetic control over the protein function. However, existing strategies for targeted lysine acylation in cells often rely on genetic intervention, recruitment of endogenous acylation machinery, or nonspecific acylating agents and lack methods to quantify the magnitude of specific acylations on a global level. In this study, we develop activity-based acylome profiling (ABAP), a chemoproteomic strategy that exploits elaborate -(cyanomethyl)--(phenylsulfonyl)amides and lysine-centric probes for site-specific introduction and proteome-wide mapping of posttranslational lysine acylations in human cells. Harnessing this framework, we quantify various artificial acylations and rediscover numerous endogenous lysine acylations. We validate site-specific acetylation of target lysines and establish a structure-activity relationship for -(cyanomethyl)--(phenylsulfonyl)amides in proteins from diverse structural and functional classes. We identify paralog-selective chemical probes that acetylate conserved lysines within interferon-stimulated antiviral RNA-binding proteins, generating proteoforms with obstructed RNA interactions. We further demonstrate that targeted acetylation of a key enzyme in retinoid metabolism engenders a proteoform with a conformational change in the protein structure, leading to a gain-of-function phenotype and reduced drug potency. These findings underscore the versatility of our strategy in biomimetic control over protein function through targeted delivery and global profiling of endogenous and artificial lysine acylations, potentially advancing therapeutic modalities and our understanding of biological processes orchestrated by these post-translational modifications.
赖氨酸酰化作用是普遍存在且结构多样的翻译后修饰,极大地扩展了人类蛋白质组的功能异质性。因此,靶向赖氨酸残基的酰化已成为对蛋白质功能进行仿生控制的一种策略。然而,细胞中靶向赖氨酸酰化的现有策略通常依赖于遗传干预、内源性酰化机制的招募或非特异性酰化剂,并且缺乏在全局水平上量化特定酰化程度的方法。在本研究中,我们开发了基于活性的酰基组分析(ABAP),这是一种化学蛋白质组学策略,利用精心设计的 -(氰甲基)-(苯磺酰)酰胺和基于赖氨酸的探针,在人类细胞中进行翻译后赖氨酸酰化的特异性引入和蛋白质组范围内的映射。利用这个框架,我们定量了各种人工酰化,并重新发现了许多内源性赖氨酸酰化。我们验证了靶赖氨酸的特异性乙酰化,并建立了 -(氰甲基)-(苯磺酰)酰胺在来自不同结构和功能类别的蛋白质中的结构-活性关系。我们鉴定了针对干扰素刺激抗病毒 RNA 结合蛋白中保守赖氨酸的同工酶选择性化学探针,生成了 RNA 相互作用受阻的蛋白质形式。我们进一步证明,视黄醇代谢中的关键酶的靶向乙酰化会导致蛋白质结构发生构象变化,产生功能获得表型和降低药物效力。这些发现强调了我们的策略在通过靶向递送和全局分析内源性和人工赖氨酸酰化来对蛋白质功能进行仿生控制方面的多功能性,可能会推进治疗方式和我们对这些翻译后修饰所调控的生物学过程的理解。