Suppr超能文献

沉浸式虚拟现实超市的认知评估集成学习算法

An Ensemble Learning Algorithm for Cognitive Evaluation by an Immersive Virtual Reality Supermarket.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:3761-3772. doi: 10.1109/TNSRE.2024.3470802. Epub 2024 Oct 14.

Abstract

Early screening for Mild Cognitive Impairment (MCI) is crucial in delaying cognitive deterioration and treating dementia. Conventional neuropsychological tests, commonly used for MCI detection, often lack ecological validity due to their simplistic and quiet testing environments. To address this gap, our study developed an immersive VR supermarket cognitive assessment program (IVRSCAP), simulating daily cognitive activities to enhance the ecological validity of MCI detection. This program involved elderly participants from Chengdu Second People's Hospital and various communities, comprising both MCI patients (N=301) and healthy elderly individuals (N=1027). They engaged in the VR supermarket cognitive test, generating complex datasets including User Behavior Data, Tested Cognitive Dimension Game Data, Trajectory Data, and Regional Data. To analyze this data, we introduced an adaptive ensemble learning method for imbalanced samples. Our study's primary contribution is demonstrating the superior performance of this algorithm in classifying MCI and healthy groups based on their performance in IVRSCAP. Comparative analysis confirmed its efficacy over traditional imbalanced sample processing methods and classic ensemble learning voting algorithms, significantly outperforming in metrics such as recall, F1-score, AUC, and G-mean. Our findings advocate the combined use of IVRSCAP and our algorithm as a technologically advanced, ecologically valid approach for enhancing early MCI detection strategies. This aligns with our broader aim of integrating realistic simulations with advanced computational techniques to improve diagnostic accuracy and treatment efficacy in cognitive health assessments.

摘要

早期轻度认知障碍(MCI)筛查对于延缓认知恶化和治疗痴呆症至关重要。传统的神经心理学测试常用于 MCI 检测,但由于其测试环境简单和安静,往往缺乏生态有效性。为了解决这一差距,我们研究开发了一种沉浸式虚拟现实超市认知评估程序(IVRSCAP),通过模拟日常认知活动来提高 MCI 检测的生态有效性。该程序涉及来自成都第二人民医院和各个社区的老年参与者,包括 MCI 患者(N=301)和健康老年人(N=1027)。他们参与了 VR 超市认知测试,生成了包括用户行为数据、测试认知维度游戏数据、轨迹数据和区域数据在内的复杂数据集。为了分析这些数据,我们引入了一种用于不平衡样本的自适应集成学习方法。我们研究的主要贡献是证明了该算法在根据 IVRSCAP 中的表现对 MCI 和健康组进行分类方面的优越性能。对比分析证实了它在召回率、F1 得分、AUC 和 G-mean 等指标上优于传统的不平衡样本处理方法和经典的集成学习投票算法。我们的研究结果提倡将 IVRSCAP 和我们的算法结合使用,作为一种先进的、具有生态有效性的方法,以增强早期 MCI 检测策略。这符合我们将现实模拟与先进计算技术相结合的更广泛目标,以提高认知健康评估中的诊断准确性和治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验