Suppr超能文献

用苄胺对宽带隙有机-无机钙钛矿进行反应性钝化

Reactive Passivation of Wide-Bandgap Organic-Inorganic Perovskites with Benzylamine.

作者信息

Zhou Suer, Gallant Benjamin M, Zhang Junxiang, Shi Yangwei, Smith Joel, Drysdale James N, Therdkatanyuphong Pattarawadee, Taddei Margherita, McCarthy Declan P, Barlow Stephen, Kilbride Rachel C, Dasgupta Akash, Marshall Ashley R, Wang Jian, Kubicki Dominik J, Ginger David S, Marder Seth R, Snaith Henry J

机构信息

Department of Physics, Clarendon Laboratory, University of Oxford Parks Road, Oxford OX1 3PU, U.K.

School of Chemistry, Molecular Sciences Building, University of Birmingham, Birmingham B15 2TT, U.K.

出版信息

J Am Chem Soc. 2024 Oct 9;146(40):27405-27416. doi: 10.1021/jacs.4c06659. Epub 2024 Sep 30.

Abstract

While amines are widely used as additives in metal-halide perovskites, our understanding of the way amines in perovskite precursor solutions impact the resultant perovskite film is still limited. In this paper, we explore the multiple effects of benzylamine (BnAm), also referred to as phenylmethylamine, used to passivate both FACsPb(IBr) and FACsPbI perovskite compositions. We show that, unlike benzylammonium (BnA) halide salts, BnAm reacts rapidly with the formamidinium (FA) cation, forming new chemical products in solution and these products passivate the perovskite crystal domains when processed into a thin film. In addition, when BnAm is used as a bulk additive, the average perovskite solar cell maximum power point tracked efficiency (for 30 s) increased to 19.3% compared to the control devices 16.8% for a 1.68 eV perovskite. Under combined full spectrum simulated sunlight and 65 °C temperature, the devices maintained a better stability of close to 2500 h while the control devices have stabilities of <100 h. We obtained similar results when presynthesizing the product BnFAI and adding it directly into the perovskite precursor solution. These findings highlight the mechanistic differences between amine and ammonium salt passivation, enabling the rational design of molecular strategies to improve the material quality and device performance of metal-halide perovskites.

摘要

虽然胺类广泛用作金属卤化物钙钛矿中的添加剂,但我们对钙钛矿前驱体溶液中的胺类影响最终钙钛矿薄膜的方式的理解仍然有限。在本文中,我们探究了苄胺(BnAm,也称为苯甲胺)对FACsPb(IBr)和FACsPbI钙钛矿组合物的多种钝化作用。我们发现,与苄基铵(BnA)卤化物盐不同,BnAm与甲脒(FA)阳离子迅速反应,在溶液中形成新的化学产物,这些产物在加工成薄膜时会钝化钙钛矿晶域。此外,当BnAm用作本体添加剂时,对于1.68 eV的钙钛矿,平均钙钛矿太阳能电池最大功率点跟踪效率(30秒)从对照器件的16.8%提高到了19.3%。在全光谱模拟阳光和65°C温度的组合条件下,器件保持了近2500小时的更好稳定性,而对照器件的稳定性小于100小时。当预合成产物BnFAI并将其直接添加到钙钛矿前驱体溶液中时,我们得到了类似的结果。这些发现突出了胺类和铵盐钝化之间的机理差异,有助于合理设计分子策略以提高金属卤化物钙钛矿的材料质量和器件性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ba7/11467896/b70f835efd27/ja4c06659_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验