Suppr超能文献

统计和基于网络的方法,用于识别推动乳腺癌进展的分子机制。

Statistics and network-based approaches to identify molecular mechanisms that drive the progression of breast cancer.

机构信息

Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China; Bioinformatics Lab. (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.

Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh; Bioinformatics Lab. (Dry), Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.

出版信息

Comput Biol Med. 2022 Jun;145:105508. doi: 10.1016/j.compbiomed.2022.105508. Epub 2022 Apr 14.

Abstract

Breast cancer (BC) is one of the most malignant tumors and the leading cause of cancer-related death in women worldwide. So, an in-depth investigation on the molecular mechanisms of BC progression is required for diagnosis, prognosis and therapies. In this study, we identified 127 common differentially expressed genes (cDEGs) between BC and control samples by analyzing five gene expression profiles with NCBI accession numbers GSE139038, GSE62931, GSE45827, GSE42568 and GSE54002, based-on two statistical methods LIMMA and SAM. Then we constructed protein-protein interaction (PPI) network of cDEGs through the STRING database and selected top-ranked 7 cDEGs (BUB1, ASPM, TTK, CCNA2, CENPF, RFC4, and CCNB1) as a set of key genes (KGs) by cytoHubba plugin in Cytoscape. Several BC-causing crucial biological processes, molecular functions, cellular components, and pathways were significantly enriched by the estimated cDEGs including at-least one KGs. The multivariate survival analysis showed that the proposed KGs have a strong prognosis power of BC. Moreover, we detected some transcriptional and post-transcriptional regulators of KGs by their regulatory network analysis. Finally, we suggested KGs-guided three repurposable candidate-drugs (Trametinib, selumetinib, and RDEA119) for BC treatment by using the GSCALite online web tool and validated them through molecular docking analysis, and found their strong binding affinities. Therefore, the findings of this study might be useful resources for BC diagnosis, prognosis and therapies.

摘要

乳腺癌(BC)是全球女性中最恶性的肿瘤之一,也是癌症相关死亡的主要原因。因此,深入研究 BC 进展的分子机制对于诊断、预后和治疗至关重要。在这项研究中,我们通过分析 NCBI 注册号为 GSE139038、GSE62931、GSE45827、GSE42568 和 GSE54002 的五个基因表达谱,基于 LIMMA 和 SAM 两种统计方法,鉴定了 127 个 BC 和对照样本之间的常见差异表达基因(cDEGs)。然后,我们通过 STRING 数据库构建了 cDEGs 的蛋白质-蛋白质相互作用(PPI)网络,并通过 Cytoscape 中的 cytoHubba 插件选择了排名前 7 的 cDEGs(BUB1、ASPM、TTK、CCNA2、CENPF、RFC4 和 CCNB1)作为一组关键基因(KGs)。通过估计的 cDEGs 显著富集了几个导致 BC 的关键生物学过程、分子功能、细胞成分和途径,包括至少一个 KGs。多元生存分析表明,所提出的 KGs 对 BC 具有很强的预后能力。此外,我们通过其调控网络分析检测到 KGs 的一些转录和转录后调控因子。最后,我们使用 GSCALite 在线网络工具,通过对 KGs 进行导向,为 BC 治疗提出了三种可重新利用的候选药物(Trametinib、selumetinib 和 RDEA119),并通过分子对接分析对其进行了验证,发现它们具有很强的结合亲和力。因此,本研究的结果可能为 BC 的诊断、预后和治疗提供有用的资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验