Suppr超能文献

探索基于结构的深度学习方法在 T 细胞受体设计中的潜力。

Exploring the potential of structure-based deep learning approaches for T cell receptor design.

机构信息

Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo, Brazil.

Graduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, São Paulo, Brazil.

出版信息

PLoS Comput Biol. 2024 Sep 30;20(9):e1012489. doi: 10.1371/journal.pcbi.1012489. eCollection 2024 Sep.

Abstract

Deep learning methods, trained on the increasing set of available protein 3D structures and sequences, have substantially impacted the protein modeling and design field. These advancements have facilitated the creation of novel proteins, or the optimization of existing ones designed for specific functions, such as binding a target protein. Despite the demonstrated potential of such approaches in designing general protein binders, their application in designing immunotherapeutics remains relatively underexplored. A relevant application is the design of T cell receptors (TCRs). Given the crucial role of T cells in mediating immune responses, redirecting these cells to tumor or infected target cells through the engineering of TCRs has shown promising results in treating diseases, especially cancer. However, the computational design of TCR interactions presents challenges for current physics-based methods, particularly due to the unique natural characteristics of these interfaces, such as low affinity and cross-reactivity. For this reason, in this study, we explored the potential of two structure-based deep learning protein design methods, ProteinMPNN and ESM-IF1, in designing fixed-backbone TCRs for binding target antigenic peptides presented by the MHC through different design scenarios. To evaluate TCR designs, we employed a comprehensive set of sequence- and structure-based metrics, highlighting the benefits of these methods in comparison to classical physics-based design methods and identifying deficiencies for improvement.

摘要

深度学习方法,通过越来越多的可用蛋白质 3D 结构和序列进行训练,极大地影响了蛋白质建模和设计领域。这些进展促进了新型蛋白质的创建,或者对特定功能(如结合靶蛋白)进行优化的现有蛋白质的设计。尽管这些方法在设计通用蛋白质结合剂方面表现出了潜力,但它们在免疫疗法设计中的应用仍然相对未得到充分探索。一个相关的应用是 T 细胞受体 (TCR) 的设计。鉴于 T 细胞在介导免疫反应中的关键作用,通过工程化 TCR 将这些细胞重新导向肿瘤或感染的靶细胞,在治疗疾病,特别是癌症方面显示出了有希望的结果。然而,TCR 相互作用的计算设计对当前基于物理的方法提出了挑战,特别是由于这些界面的独特自然特性,如低亲和力和交叉反应性。出于这个原因,在这项研究中,我们探索了两种基于结构的深度学习蛋白质设计方法(ProteinMPNN 和 ESM-IF1)的潜力,用于通过不同的设计方案设计固定骨干 TCR 以结合 MHC 呈现的靶抗原肽。为了评估 TCR 设计,我们使用了一套全面的基于序列和结构的指标,强调了这些方法相对于经典基于物理的设计方法的优势,并确定了需要改进的不足之处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01b2/11466415/acb2604d2ccc/pcbi.1012489.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验