Suppr超能文献

机器学习驱动的中国南水北调工程蓄水湖泊重金属污染评估:识别时空模式与生态风险

Machine learning-driven assessment of heavy metal contamination in the impounded lakes of China's South-to-North Water Diversion Project: Identifying spatiotemporal patterns and ecological risks.

作者信息

Wang Senyang, Li Guangyu, Ji Xiang, Wang Yang, Xu Bo, Tang Jianfeng, Guo Chuanbo

机构信息

Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei 430070, China.

College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei 430070, China.

出版信息

J Hazard Mater. 2024 Dec 5;480:135983. doi: 10.1016/j.jhazmat.2024.135983. Epub 2024 Sep 26.

Abstract

The Eastern Route of China's South-to-North Water Diversion Project (SNWDP-ER) traverses through impounded lakes that are potentially vulnerable to heavy metals (HMs) contamination although the understanding remains elusive. This study employed machine learning approaches, including super-clustering of Self-Organizing Map (SOM) and Robust Principal Component Analysis (RPCA), to elucidate the spatiotemporal patterns and assess ecological risks associated with HMs in the surface sediments of Gao-Bao-Shaobo Lake (GBSL) and Dongping Lake (DPL). We collected 184 surface sediments from 47 stations across the two important impounded lakes over four seasons. The results revealed higher HMs concentrations in the south-central GBSL and west-central DPL, with a notable increase in contamination in autumn. The comprehensive risk assessment, utilizing various indicators such as the Sediment Quality Guidelines (SQGs), Improved Potential Ecological Risk Index (IPERI), Geo-accumulation Index (Igeo), Contamination Factor (CF), and Enrichment Factor (EF), identified arsenic (As), cadmium (Cd), nickel (Ni), and chromium (Cr) as primary contaminants of concern. Positive Matrix Factorization (PMF) model, coupled with Spearman analysis, attributed over 70 % of HMs pollution to anthropogenic activities. This research provides a nuanced understanding of HMs pollution in the context of large-scale water diversion projects and offers a scientific basis for targeted pollution mitigation strategies.

摘要

中国南水北调东线工程(SNWDP - ER)穿越蓄水区湖泊,这些湖泊可能易受重金属(HMs)污染,尽管目前对此的了解仍很有限。本研究采用机器学习方法,包括自组织映射(SOM)的超聚类和稳健主成分分析(RPCA),以阐明时空模式,并评估高宝邵伯湖(GBSL)和东平湖(DPL)表层沉积物中与重金属相关的生态风险。我们在四个季节从两个重要蓄水区湖泊的47个站点采集了184份表层沉积物样本。结果显示,GBSL中南部和DPL中西部的重金属浓度较高,秋季污染显著增加。利用沉积物质量基准(SQGs)、改进的潜在生态风险指数(IPERI)、地累积指数(Igeo)、污染因子(CF)和富集因子(EF)等各种指标进行的综合风险评估,确定砷(As)、镉(Cd)、镍(Ni)和铬(Cr)为主要关注污染物。正矩阵因子分解(PMF)模型结合斯皮尔曼分析表明,超过70%的重金属污染归因于人为活动。本研究为大规模调水工程背景下的重金属污染提供了细致入微的理解,并为有针对性的污染缓解策略提供了科学依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验