Suppr超能文献

联合认知评估与自动磁共振成像容积测量可提高检测阿尔茨海默病所致轻度认知障碍的诊断准确性。

Combined cognitive assessment and automated MRI volumetry improves the diagnostic accuracy of detecting MCI due to Alzheimer's disease.

作者信息

Defrancesco Michaela, Marksteiner Josef, Lenhart Lukas, Klingler Paul, Steiger Ruth, Gizewski Elke R, Goebel Georg, Deisenhammer Eberhard A, Scherfler Christoph

机构信息

Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Division of Psychiatry I, Medical University of Innsbruck, Austria.

Department of Psychiatry and Psychotherapy A, Landeskrankenhaus Hall, Austria.

出版信息

Prog Neuropsychopharmacol Biol Psychiatry. 2025 Jan 10;136:111157. doi: 10.1016/j.pnpbp.2024.111157. Epub 2024 Sep 29.

Abstract

BACKGROUND

Mild cognitive impairment (MCI) confers a high annual risk of 10-15 % of conversion to Alzheimer's disease (AD) dementia. MRI atrophy patterns derived from automated ROI analysis, particularly hippocampal subfield volumes, were reported to be useful in diagnosing early clinical stages of Alzheimer's disease.

OBJECTIVE

The aim of the present study was to combine automated ROI MRI morphometry of hippocampal subfield volumes and cortical thickness estimates using FreeSurfer 6.0 with cognitive measures to predict disease progression and time to conversion from MCI to AD dementia.

METHODS

Baseline (Neuropsychology, MRI) and clinical follow-up data from 62 MCI patients were analysed retrospectively. Individual cortical thickness and volumetric measures were obtained from T1-weighted MRI. Linear discriminant analysis (LDA) of both, cognitive measures and MRI measures (hippocampal subfields, temporal and parietal lobe volumes), were performed to differentiate MCI converters from stable MCI patients.

RESULTS

Out of 62 MCI patients 21 (34 %) converted to AD dementia within a mean follow-up time of 74.7 ± 36.8 months (mean ± SD, range 12 to 130 months). LDA identified temporal lobe atrophy and hippocampal subfield volumes in combination with cognitive measures of verbal memory, verbal fluency and executive functions to correctly classify 71.4.% of MCI subjects converting to AD dementia and 92.7 % with stable MCI. Lower baseline GM volume of the subiculum and the superior temporal gyrus was associated with faster disease progression of MCI converters.

CONCLUSION

Combining cognitive assessment with automated ROI MRI morphometry is superior to using a single test in order to distinguish MCI due to AD from non converting MCI patients.

摘要

背景

轻度认知障碍(MCI)每年有10%-15%转化为阿尔茨海默病(AD)痴呆的高风险。据报道,源自自动感兴趣区(ROI)分析的MRI萎缩模式,特别是海马亚区体积,有助于诊断阿尔茨海默病的早期临床阶段。

目的

本研究旨在将使用FreeSurfer 6.0对海马亚区体积和皮质厚度估计值进行的自动ROI MRI形态测量与认知测量相结合,以预测疾病进展以及从MCI转化为AD痴呆的时间。

方法

对62例MCI患者的基线(神经心理学、MRI)和临床随访数据进行回顾性分析。从T1加权MRI获得个体皮质厚度和体积测量值。对认知测量值和MRI测量值(海马亚区、颞叶和顶叶体积)进行线性判别分析(LDA),以区分MCI转化者和稳定的MCI患者。

结果

在62例MCI患者中,21例(34%)在平均74.7±36.8个月(平均±标准差,范围12至130个月)的随访时间内转化为AD痴呆。LDA结合言语记忆、言语流畅性和执行功能的认知测量值,确定颞叶萎缩和海马亚区体积能够正确分类71.4%转化为AD痴呆的MCI受试者以及92.7%稳定的MCI受试者。下托和颞上回较低的基线灰质体积与MCI转化者更快的疾病进展相关。

结论

将认知评估与自动ROI MRI形态测量相结合,在区分由AD引起的MCI和未转化的MCI患者方面优于使用单一测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验