Chen Changdong, Li Xiao, Li Weimian, Xue Ming, Shi Yaoyao, Dong Daxing, Xu Yadong, Liu Youwen, Fu Yangyang
College of Physics, Nanjing University of Aeronautics and Astronautics, Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing, 211106, China.
College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
Nat Commun. 2024 Sep 30;15(1):8391. doi: 10.1038/s41467-024-52593-y.
The precise measurement of minute displacements using light is a common practice in modern science and technology. The utilization of sound for precision displacement metrology remains scarce due to the diffraction limit of half-wavelength, while it holds crucial applications in some specific scenarios, such as underwater environments, biological tissues, and complex machinery components. Here, we propose an approach to super-resolution acoustic displacement metrology by introducing the concept of topological pairs in orbital meta-atoms, drawing inspiration from the analogy of Cooper pairs observed in spinful electrons. The topological pairs are conjugately formed to create two distinct pathways in mode space that enable robust generation of interference. This allows the realization of acoustic analogue of Malus's law and thereby enhances the resolution of displacement measurements. By incorporating a spiral twist configuration in orbital meta-atoms, we demonstrate the first acoustic prototype of a physical micrometer tailored for micron-scale displacement metrology. We observe experimentally a displacement resolving power of 1.2 μm at an audible frequency of 3.43 kHz, approximately 1/10 of the sound wavelength of 100 mm. Our work implies a new paradigm for precise displacement metrology within classical wave physics and lays the foundation for diverse acoustic applications.
利用光精确测量微小位移是现代科学技术中的常见做法。由于半波长的衍射极限,利用声音进行精确位移计量的情况仍然很少,不过它在一些特定场景中有着关键应用,比如水下环境、生物组织和复杂机械部件。在此,我们从有自旋电子中观察到的库珀对类比中获得灵感,通过在轨道元原子中引入拓扑对的概念,提出一种超分辨率声位移计量方法。拓扑对共轭形成,在模式空间中创建两条不同的路径,从而能够稳健地产生干涉。这使得能够实现马吕斯定律的声学模拟,进而提高位移测量的分辨率。通过在轨道元原子中纳入螺旋扭曲结构,我们展示了首个专为微米级位移计量量身定制的物理微米级声学原型。我们在3.43 kHz的可听频率下通过实验观察到1.2 μm的位移分辨能力,约为100 mm声音波长的1/10。我们的工作意味着经典波动物理学中精确位移计量的一种新范式,并为多种声学应用奠定了基础。