文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过多视图协同训练机器学习模型对 2 型糖尿病严重低血糖进行预测,解决数据集不平衡问题。

Enhancing severe hypoglycemia prediction in type 2 diabetes mellitus through multi-view co-training machine learning model for imbalanced dataset.

机构信息

Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA.

Department of Statistics, Giresun University, Giresun, 28200, Turkey.

出版信息

Sci Rep. 2024 Sep 30;14(1):22741. doi: 10.1038/s41598-024-69844-z.


DOI:10.1038/s41598-024-69844-z
PMID:39349500
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11444036/
Abstract

Patients with type 2 diabetes mellitus (T2DM) who have severe hypoglycemia (SH) poses a considerable risk of long-term death, especially among the elderly, demanding urgent medical attention. Accurate prediction of SH remains challenging due to its multifaced nature, contributed from factors such as medications, lifestyle choices, and metabolic measurements. In this study, we propose a systematic approach to improve the robustness and accuracy of SH predictions using machine learning models, guided by clinical feature selection. Our focus is on developing long-term SH prediction models using both semi-supervised learning and supervised learning algorithms. Using the action to control cardiovascular risk in diabetes trial, which includes electronic health records for over 10,000 individuals, we focus on studying adults with T2DM. Our results indicate that the application of a multi-view co-training method, incorporating the random forest algorithm, improves the specificity of SH prediction, while the same setup with Naive Bayes replacing random forest demonstrates better sensitivity. Our framework also provides interpretability of machine learning models by identifying key predictors for hypoglycemia, including fasting plasma glucose, hemoglobin A1c, general diabetes education, and NPH or L insulins. The integration of data routinely available in electronic health records significantly enhances our model's capability to predict SH events, showcasing its potential to transform clinical practice by facilitating early interventions and optimizing patient management. By enhancing prediction accuracy and identifying crucial predictive features, our study contributes to advancing the understanding and management of hypoglycemia in this population.

摘要

患有 2 型糖尿病(T2DM)且经历过严重低血糖(SH)的患者存在较高的长期死亡风险,尤其是老年人,需要紧急医疗关注。由于其多方面的性质,包括药物、生活方式选择和代谢测量等因素,准确预测 SH 仍然具有挑战性。在这项研究中,我们提出了一种使用机器学习模型的系统方法,通过临床特征选择来提高 SH 预测的稳健性和准确性。我们的重点是使用半监督学习和监督学习算法开发长期 SH 预测模型。使用 ACTION 研究,该研究包含了超过 10000 个人的电子健康记录,我们专注于研究患有 T2DM 的成年人。我们的结果表明,应用多视图协同训练方法,结合随机森林算法,可以提高 SH 预测的特异性,而使用朴素贝叶斯替代随机森林的相同设置则表现出更好的敏感性。我们的框架还通过识别低血糖的关键预测因素,包括空腹血糖、糖化血红蛋白、一般糖尿病教育以及 NPH 或 L 胰岛素,提供了机器学习模型的可解释性。将电子健康记录中常规可用的数据进行整合,显著增强了我们模型预测 SH 事件的能力,展示了其通过促进早期干预和优化患者管理来改变临床实践的潜力。通过提高预测准确性和识别关键预测特征,我们的研究有助于提高对该人群低血糖的理解和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/11444036/8823a83160b2/41598_2024_69844_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/11444036/2714907d7c5c/41598_2024_69844_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/11444036/8823a83160b2/41598_2024_69844_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/11444036/2714907d7c5c/41598_2024_69844_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/11444036/8823a83160b2/41598_2024_69844_Fig2_HTML.jpg

相似文献

[1]
Enhancing severe hypoglycemia prediction in type 2 diabetes mellitus through multi-view co-training machine learning model for imbalanced dataset.

Sci Rep. 2024-9-30

[2]
Machine Learning to Identify Predictors of Glycemic Control in Type 2 Diabetes: An Analysis of Target HbA1c Reduction Using Empagliflozin/Linagliptin Data.

Pharmaceut Med. 2019-6

[3]
A novel electronic health record-based, machine-learning model to predict severe hypoglycemia leading to hospitalizations in older adults with diabetes: A territory-wide cohort and modeling study.

PLoS Med. 2024-4

[4]
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.

Artif Intell Med. 2019-7-26

[5]
A machine learning-based framework to identify type 2 diabetes through electronic health records.

Int J Med Inform. 2017-1

[6]
Status of glycosylated hemoglobin and prediction of glycemic control among patients with insulin-treated type 2 diabetes in North China: a multicenter observational study.

Chin Med J (Engl). 2020-1-5

[7]
Hypoglycemia in People with Type 2 Diabetes and CKD.

Clin J Am Soc Nephrol. 2019-4-17

[8]
A novel hypoglycemia alarm framework for type 2 diabetes with high glycemic variability.

Int J Numer Method Biomed Eng. 2024-2

[9]
Network meta-analysis of glucose-lowering drug treatment regimens with the potential risk of hypoglycemia in patients with type 2 diabetes mellitus in terms of glycemic control and severe hypoglycemia.

J Investig Med. 2023-4

[10]
Minimizing postprandial hypoglycemia in Type 1 diabetes patients using multiple insulin injections and capillary blood glucose self-monitoring with machine learning techniques.

Comput Methods Programs Biomed. 2019-6-27

引用本文的文献

[1]
Predictive factors of hypoglycemia in type 2 diabetes: a prospective study using machine learning.

Sci Rep. 2025-5-25

本文引用的文献

[1]
A novel electronic health record-based, machine-learning model to predict severe hypoglycemia leading to hospitalizations in older adults with diabetes: A territory-wide cohort and modeling study.

PLoS Med. 2024-4

[2]
Variation in the relationship between fasting glucose and HbA1c: implications for the diagnosis of diabetes in different age and ethnic groups.

BMJ Open Diabetes Res Care. 2024-3-4

[3]
A comparative study of explainable ensemble learning and logistic regression for predicting in-hospital mortality in the emergency department.

Sci Rep. 2024-2-10

[4]
Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging.

Nat Biomed Eng. 2023-6

[5]
Explainable machine learning aggregates polygenic risk scores and electronic health records for Alzheimer's disease prediction.

Sci Rep. 2023-1-9

[6]
Development of early prediction model for pregnancy-associated hypertension with graph-based semi-supervised learning.

Sci Rep. 2022-9-22

[7]
Association of long-term visit-to-visit variability of HbA1c and fasting glycemia with hypoglycemia in type 2 diabetes mellitus.

Front Endocrinol (Lausanne). 2022

[8]
Identification of robust deep neural network models of longitudinal clinical measurements.

NPJ Digit Med. 2022-7-27

[9]
A novel 6-metabolite signature for prediction of clinical outcomes in type 2 diabetic patients undergoing percutaneous coronary intervention.

Cardiovasc Diabetol. 2022-7-4

[10]
Predicting Risk of Hypoglycemia in Patients With Type 2 Diabetes by Electronic Health Record-Based Machine Learning: Development and Validation.

JMIR Med Inform. 2022-6-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索