Division of Applied Mathematics, Brown University, Providence, RI, 02912, USA.
Department of Statistics, Giresun University, Giresun, 28200, Turkey.
Sci Rep. 2024 Sep 30;14(1):22741. doi: 10.1038/s41598-024-69844-z.
Patients with type 2 diabetes mellitus (T2DM) who have severe hypoglycemia (SH) poses a considerable risk of long-term death, especially among the elderly, demanding urgent medical attention. Accurate prediction of SH remains challenging due to its multifaced nature, contributed from factors such as medications, lifestyle choices, and metabolic measurements. In this study, we propose a systematic approach to improve the robustness and accuracy of SH predictions using machine learning models, guided by clinical feature selection. Our focus is on developing long-term SH prediction models using both semi-supervised learning and supervised learning algorithms. Using the action to control cardiovascular risk in diabetes trial, which includes electronic health records for over 10,000 individuals, we focus on studying adults with T2DM. Our results indicate that the application of a multi-view co-training method, incorporating the random forest algorithm, improves the specificity of SH prediction, while the same setup with Naive Bayes replacing random forest demonstrates better sensitivity. Our framework also provides interpretability of machine learning models by identifying key predictors for hypoglycemia, including fasting plasma glucose, hemoglobin A1c, general diabetes education, and NPH or L insulins. The integration of data routinely available in electronic health records significantly enhances our model's capability to predict SH events, showcasing its potential to transform clinical practice by facilitating early interventions and optimizing patient management. By enhancing prediction accuracy and identifying crucial predictive features, our study contributes to advancing the understanding and management of hypoglycemia in this population.
患有 2 型糖尿病(T2DM)且经历过严重低血糖(SH)的患者存在较高的长期死亡风险,尤其是老年人,需要紧急医疗关注。由于其多方面的性质,包括药物、生活方式选择和代谢测量等因素,准确预测 SH 仍然具有挑战性。在这项研究中,我们提出了一种使用机器学习模型的系统方法,通过临床特征选择来提高 SH 预测的稳健性和准确性。我们的重点是使用半监督学习和监督学习算法开发长期 SH 预测模型。使用 ACTION 研究,该研究包含了超过 10000 个人的电子健康记录,我们专注于研究患有 T2DM 的成年人。我们的结果表明,应用多视图协同训练方法,结合随机森林算法,可以提高 SH 预测的特异性,而使用朴素贝叶斯替代随机森林的相同设置则表现出更好的敏感性。我们的框架还通过识别低血糖的关键预测因素,包括空腹血糖、糖化血红蛋白、一般糖尿病教育以及 NPH 或 L 胰岛素,提供了机器学习模型的可解释性。将电子健康记录中常规可用的数据进行整合,显著增强了我们模型预测 SH 事件的能力,展示了其通过促进早期干预和优化患者管理来改变临床实践的潜力。通过提高预测准确性和识别关键预测特征,我们的研究有助于提高对该人群低血糖的理解和管理。
Clin J Am Soc Nephrol. 2019-4-17
Int J Numer Method Biomed Eng. 2024-2
BMJ Open Diabetes Res Care. 2024-3-4
Front Endocrinol (Lausanne). 2022
NPJ Digit Med. 2022-7-27