Suppr超能文献

基于联邦深度强化学习的无人机辅助移动地面设备网络轨迹设计

Federated deep reinforcement learning based trajectory design for UAV-assisted networks with mobile ground devices.

作者信息

Gao Yunfei, Liu Mingliu, Yuan Xiaopeng, Hu Yulin, Sun Peng, Schmeink Anke

机构信息

School of Electronic Information, Wuhan University, Wuhan, 430072, China.

INDA Institute, RWTH Aachen University, 52074, Aachen, Germany.

出版信息

Sci Rep. 2024 Oct 1;14(1):22753. doi: 10.1038/s41598-024-72654-y.

Abstract

Exploiting highly maneuverable unmanned aerial vehicles (UAVs) has been considered as an efficient way to assist wireless systems, e.g., for applications of data collection. However, several challenges remain to be addressed in the design of such UAV-assisted networks, including multi-UAV joint trajectory determination, data privacy protection, and adaption to the complex channel environment particularly with mobile ground devices (GDs). In this paper, we study a multi-UAV assisted data collection system where UAVs collect data locally from mobile GDs. The aim is to minimize the whole operation time cost via jointly optimizing the UAVs' three-dimensional (3D) trajectory together with the GDs' communication scheduling, while satisfying the constraints of no-fly zones (NFZs) and collision avoidance. With a nonconvex feasible set (due to the NFZs), the established problem is nonconvex. Moreover, the randomness of GDs movements significantly reduces the performance of a typical redesign, i.e., determining the UAVs' trajectory and users' scheduling before starting the data collection task. To tackle these issues, we first transform the established problem into a Markov decision one, and then propose a multi-agent federated reinforcement learning (MAFRL)-based approach to optimize the dynamic long-term objective via jointly determining UAVs' 3D trajectory and GD's communication scheduling. A multi-step propagation technique and a dueling network architecture are adopted to enhance the neural network utilized to train agents, i.e., to accelerate the convergence rate of the proposed method and improve its overall stability. Finally, experimental results reveal the effectiveness of our proposed method in the considered practical scenario.

摘要

利用高机动性的无人机(UAV)被认为是协助无线系统的一种有效方式,例如用于数据收集应用。然而,在这种无人机辅助网络的设计中仍有几个挑战需要解决,包括多无人机联合轨迹确定、数据隐私保护以及适应复杂的信道环境,特别是与移动地面设备(GD)相关的环境。在本文中,我们研究了一种多无人机辅助数据收集系统,其中无人机从移动GD本地收集数据。目的是通过联合优化无人机的三维(3D)轨迹以及GD的通信调度,同时满足禁飞区(NFZ)和碰撞避免的约束,来最小化整个操作时间成本。由于存在非凸可行集(由于NFZ),所建立的问题是非凸的。此外,GD移动的随机性显著降低了典型重新设计的性能,即在开始数据收集任务之前确定无人机的轨迹和用户的调度。为了解决这些问题,我们首先将所建立的问题转化为马尔可夫决策问题,然后提出一种基于多智能体联邦强化学习(MAFRL)的方法,通过联合确定无人机的3D轨迹和GD的通信调度来优化动态长期目标。采用多步传播技术和决斗网络架构来增强用于训练智能体的神经网络,即加快所提方法的收敛速度并提高其整体稳定性。最后,实验结果揭示了我们所提方法在考虑的实际场景中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d669/11442766/aa8895efd71b/41598_2024_72654_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验