Suppr超能文献

应用磁共振成像衍生的放射组学特征预测缺氧缺血性脑病新生儿的喂养困难。

Prediction of feeding difficulties in neonates with hypoxic-ischemic encephalopathy using magnetic resonance imaging-derived radiomics features.

机构信息

Department of Radiology, Children's Hospital of Fudan University, No. 399 Wanyuan Road, Minhang District, Shanghai, China.

National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China.

出版信息

Pediatr Radiol. 2024 Nov;54(12):2036-2045. doi: 10.1007/s00247-024-06065-6. Epub 2024 Oct 1.

Abstract

BACKGROUND

The mechanisms behind brain and spinal cord injuries in hypoxic-ischemic encephalopathy (HIE) and associated feeding difficulties are unclear, with previous magnetic resonance imaging (MRI) attempts yielding inconclusive results.

OBJECTIVE

We aim to evaluate an MRI radiomics model for predicting feeding difficulties in HIE infants. Additionally, we investigate changes in predictive capability after incorporating the duration of mechanical ventilation and the timing of MRI examination.

MATERIALS AND METHODS

Retrospective study with 151 HIE infants (January 2013 to December 2021), randomly divided into training and validation sets. Radiomics features extracted from basal ganglia-thalamus and brainstem in T1-weighted and T2-weighted MRI. Established single-modality, single-site, and multimodality/multisite models. Receiver operating characteristic analysis and area under the curve evaluated models. Decision curve analysis assessed changes in predictive capability.

RESULTS

The combined radiomics model of the basal ganglia-thalamus and brainstem regions on the T2-weighted imaging demonstrated superior performance (area under the curve: 0.958 and 0.875 for training and validation, respectively). Combining scores with duration of mechanical ventilation and MRI examination time in a calibration plot model improved and stabilized performance, showing high fitting and clinical utility. Decision curve analysis favored the combined calibration plot model.

CONCLUSION

The MRI-based radiomics model predicts feeding difficulties in HIE infants, with basal ganglia-thalamus and brainstem as relevant factors. The combined calibration plot model exhibits the highest clinical predictive efficacy.

摘要

背景

缺氧缺血性脑病(HIE)导致的脑和脊髓损伤以及相关喂养困难的机制尚不清楚,先前的磁共振成像(MRI)尝试结果也没有定论。

目的

我们旨在评估一种 MRI 放射组学模型,以预测 HIE 婴儿的喂养困难。此外,我们还研究了纳入机械通气持续时间和 MRI 检查时间后预测能力的变化。

材料和方法

回顾性研究,纳入 151 例 HIE 婴儿(2013 年 1 月至 2021 年 12 月),随机分为训练集和验证集。从 T1 加权和 T2 加权 MRI 的基底节-丘脑和脑干中提取放射组学特征。建立单模态、单部位和多模态/多部位模型。使用受试者工作特征分析和曲线下面积评估模型。决策曲线分析评估预测能力的变化。

结果

T2 加权成像中基底节-丘脑和脑干联合放射组学模型的表现最佳(训练集和验证集的曲线下面积分别为 0.958 和 0.875)。在校准图模型中结合机械通气持续时间和 MRI 检查时间评分可提高和稳定性能,显示出高拟合度和临床实用性。决策曲线分析倾向于联合校准图模型。

结论

基于 MRI 的放射组学模型可预测 HIE 婴儿的喂养困难,基底节-丘脑和脑干是相关因素。联合校准图模型具有最高的临床预测疗效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验