Suppr超能文献

基于 CFD-FSI、cGAN 和 CNN 的无创影像预测冠状动脉闭塞风险。

Predicting coronary artery occlusion risk from noninvasive images by combining CFD-FSI, cGAN and CNN.

机构信息

Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.

出版信息

Sci Rep. 2024 Sep 30;14(1):22693. doi: 10.1038/s41598-024-73396-7.

Abstract

Wall Shear Stress (WSS) is one of the most important parameters used in cardiovascular fluid mechanics, and it provides a lot of information like the risk level caused by any vascular occlusion. Since WSS cannot be measured directly and other available relevant methods have issues like low resolution, uncertainty and high cost, this study proposes a novel method by combining computational fluid dynamics (CFD), fluid-structure interaction (FSI), conditional generative adversarial network (cGAN) and convolutional neural network (CNN) to predict coronary artery occlusion risk using only noninvasive images accurately and rapidly. First, a cGAN model called WSSGAN was developed to predict the WSS contours on the vessel wall by training and testing the model based on the calculated WSS contours using coupling CFD-FSI simulations. Then, an 11-layer CNN was used to classify the WSS contours into three grades of occlusions, i.e. low risk, medium risk and high risk. To verify the proposed method for predicting the coronary artery occlusion risk in a real case, the patient's Magnetic Resonance Imaging (MRI) images were converted into a 3D geometry for use in the WASSGAN model. Then, the predicted WSS contours by the WSSGAN were entered into the CNN model to classify the occlusion grade.

摘要

壁面切应力(WSS)是心血管流体力学中最重要的参数之一,它提供了很多信息,例如任何血管阻塞引起的风险水平。由于 WSS 不能直接测量,而其他可用的相关方法存在分辨率低、不确定性和成本高等问题,因此本研究提出了一种新方法,通过将计算流体动力学(CFD)、流固耦合(FSI)、条件生成对抗网络(cGAN)和卷积神经网络(CNN)结合起来,仅使用非侵入性图像准确快速地预测冠状动脉阻塞风险。首先,开发了一种称为 WSSGAN 的 cGAN 模型,通过基于耦合 CFD-FSI 模拟计算的 WSS 轮廓对模型进行训练和测试,来预测血管壁上的 WSS 轮廓。然后,使用一个 11 层的 CNN 将 WSS 轮廓分为低风险、中风险和高风险三个等级。为了验证该方法在真实病例中预测冠状动脉阻塞风险的能力,将患者的磁共振成像(MRI)图像转换为 3D 几何形状,用于 WASSGAN 模型。然后,将 WSSGAN 预测的 WSS 轮廓输入到 CNN 模型中进行阻塞等级分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/074e/11442941/de28181059ce/41598_2024_73396_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验