Suppr超能文献

基于强化联邦学习的尿路疾病数据集处理策略。

A reinforcement federated learning based strategy for urinary disease dataset processing.

机构信息

Department of Computer System Engineering, Dawood University of Engineering and Technology, Sindh, Karachi, Pakistan.

Mobile Technology Laboratory, School of Economics, Innovation and Technology, Kristiania University College, 0153 Oslo, Norway.

出版信息

Comput Biol Med. 2023 Sep;163:107210. doi: 10.1016/j.compbiomed.2023.107210. Epub 2023 Jul 3.

Abstract

Urinary disease is a complex healthcare issue that continues to grow in prevalence. Urine tests have proven valuable in identifying conditions such as kidney disease, urinary tract infections, and lower abdominal pain. While machine learning has made significant strides in automating urinary tract infection detection, the accuracy of existing methods is hindered by concerns surrounding data privacy and the time-intensive nature of training and testing with large datasets. Our proposed method aims to address these limitations and achieve highly accurate urinary tract infection detection across various healthcare laboratories, while simultaneously minimizing data security risks and processing delays. To tackle this challenge, we approach the problem as a combinatorial optimization task. We optimize the accuracy objective as a concave function and minimize computation delay as a convex function. Our work introduces a framework enabled by federated learning and reinforcement learning strategy (FLRLS), leveraging lab urine data. FLRLS employs deterministic agents to optimize the exploration and exploitation of urinary data, while the actual determination of urinary tract infections is performed at a centralized, aggregated node. Experimental results demonstrate that our proposed method improves accuracy by 5% and reduces total delay. By combining federated learning, reinforcement learning, and a combinatorial optimization approach, we achieve both high accuracy and minimal delay in urinary tract infection detection.

摘要

泌尿系统疾病是一个复杂的医疗保健问题,其发病率持续上升。尿液检测已被证明在识别肾脏疾病、尿路感染和下腹痛等疾病方面非常有价值。虽然机器学习在自动检测尿路感染方面取得了重大进展,但现有方法的准确性受到数据隐私问题以及使用大型数据集进行训练和测试的时间密集性质的限制。我们提出的方法旨在解决这些限制,并在各种医疗保健实验室中实现高度准确的尿路感染检测,同时最大限度地降低数据安全风险和处理延迟。为了解决这个挑战,我们将这个问题视为一个组合优化任务。我们将准确性目标优化为凹函数,并将计算延迟最小化作为凸函数。我们的工作引入了一个由联邦学习和强化学习策略(FLRLS)支持的框架,利用实验室尿液数据。FLRLS 使用确定性代理来优化对尿液数据的探索和利用,而尿路感染的实际确定则在集中式聚合节点进行。实验结果表明,我们提出的方法将准确性提高了 5%,并减少了总延迟。通过结合联邦学习、强化学习和组合优化方法,我们在尿路感染检测中实现了高精度和最小延迟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验