Suppr超能文献

基于机器学习的颈椎后路椎板成形术门诊随访方案优化模型。

Machine-learning-based models for the optimization of post-cervical spinal laminoplasty outpatient follow-up schedules.

机构信息

Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.

Department of Transdisciplinary Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-gu, Seoul, 03080, Republic of Korea.

出版信息

BMC Med Inform Decis Mak. 2024 Sep 30;24(1):278. doi: 10.1186/s12911-024-02693-y.

Abstract

BACKGROUND

Patients undergo regular clinical follow-up after laminoplasty for cervical myelopathy. However, those whose symptoms significantly improve and remain stable do not need to conform to a regular follow-up schedule. Based on the 1-year postoperative outcomes, we aimed to use a machine-learning (ML) algorithm to predict 2-year postoperative outcomes.

METHODS

We enrolled 80 patients who underwent cervical laminoplasty for cervical myelopathy. The patients' Japanese Orthopedic Association (JOA) scores (range: 0-17) were analyzed at the 1-, 3-, 6-, and 12-month postoperative timepoints to evaluate their ability to predict the 2-year postoperative outcomes. The patient acceptable symptom state (PASS) was defined as a JOA score ≥ 14.25 at 24 months postoperatively and, based on clinical outcomes recorded up to the 1-year postoperative timepoint, eight ML algorithms were developed to predict PASS status at the 24-month postoperative timepoint. The performance of each of these algorithms was evaluated, and its generalizability was assessed using a prospective internal test set.

RESULTS

The long short-term memory (LSTM)-based algorithm demonstrated the best performance (area under the receiver operating characteristic curve, 0.90 ± 0.13).

CONCLUSIONS

The LSTM-based algorithm accurately predicted which group was likely to achieve PASS at the 24-month postoperative timepoint. Although this study included a small number of patients with limited available clinical data, the concept of using past outcomes to predict further outcomes presented herein may provide insights for optimizing clinical schedules and efficient medical resource utilization.

TRIAL REGISTRATION

This study was registered as a clinical trial (Clinical Trial No. NCT02487901), and the study protocol was approved by the Seoul National University Hospital Institutional Review Board (IRB No. 1505-037-670).

摘要

背景

接受颈椎脊髓病后路减压术后的患者需要定期进行临床随访。然而,那些症状显著改善且稳定的患者无需遵循常规随访计划。基于术后 1 年的结果,我们旨在使用机器学习(ML)算法预测术后 2 年的结果。

方法

我们纳入了 80 例因颈椎脊髓病而行颈椎减压术后的患者。分析了患者术后 1、3、6 和 12 个月的日本骨科协会(JOA)评分(范围:0-17),以评估其预测术后 2 年结果的能力。患者可接受的症状状态(PASS)定义为术后 24 个月时的 JOA 评分≥14.25。基于术后 1 年时记录的临床结果,开发了 8 种 ML 算法来预测术后 24 个月时的 PASS 状态。评估了每种算法的性能,并使用前瞻性内部测试集评估了其泛化能力。

结果

基于长短期记忆(LSTM)的算法表现最佳(受试者工作特征曲线下面积,0.90±0.13)。

结论

基于 LSTM 的算法可准确预测在术后 24 个月时哪个组更有可能达到 PASS。尽管本研究纳入的患者数量较少,且临床数据有限,但本文提出的使用既往结果预测未来结果的概念可能为优化临床方案和有效利用医疗资源提供思路。

试验注册

本研究作为一项临床试验进行注册(临床试验编号:NCT02487901),并经首尔国立大学医院伦理审查委员会(IRB 编号:1505-037-670)批准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1c5/11440713/af85fdff7d93/12911_2024_2693_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验