Zhang Lisha, Gao Wei, Su Li, He Wenying, Wang Yize, Hu Minghui, Liu Zixi, Liu Yanling, Feng Huajie
Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, 571158, P. R. China.
School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
Chemphyschem. 2025 Jan 2;26(1):e202400591. doi: 10.1002/cphc.202400591. Epub 2024 Nov 11.
This study investigates the role of intramolecular hydrogen bonds in the formation of cocrystals involving flavonoid molecules, focusing on three active pharmaceutical ingredients (APIs): chrysin (CHR), isoliquiritigenin (ISO), and kaempferol (KAE). These APIs form cocrystals with different cocrystal formers (CCFs) through intramolecular hydrogen bonding. We found that disruption of these intramolecular hydrogen bonds leads to decreased stability compared to molecules with intact bonds. The extrema of molecular electrostatic potential surfaces (MEPS) show that flavonoid molecules with disrupted intramolecular hydrogen bonds have stronger hydrogen bond donors and acceptors than those with intact bonds. Using the artificial bee colony algorithm, dimeric structures of these flavonoid molecules were explored, representing early-stage structures in cocrystal formation, including API-API, API-CCF, and CCF-CCF dimers. It was observed that the number and strength of dimeric interactions significantly increased, and the types of interactions changed when intramolecular hydrogen bonds were disrupted. These findings suggest that disrupting intramolecular hydrogen bonds generally hinders the formation of cocrystals. This theoretical study provides deeper insight into the role of intramolecular hydrogen bonds in the cocrystal formation of flavonoids.
本研究调查了分子内氢键在涉及黄酮类分子的共晶形成中的作用,重点关注三种活性药物成分(APIs):白杨素(CHR)、异甘草素(ISO)和山奈酚(KAE)。这些活性药物成分通过分子内氢键与不同的共晶形成物(CCFs)形成共晶。我们发现,与具有完整键的分子相比,这些分子内氢键的破坏会导致稳定性降低。分子静电势表面(MEPS)的极值表明,分子内氢键被破坏的黄酮类分子比具有完整键的分子具有更强的氢键供体和受体。使用人工蜂群算法,探索了这些黄酮类分子的二聚体结构,这些结构代表了共晶形成的早期阶段结构,包括活性药物成分-活性药物成分、活性药物成分-共晶形成物和共晶形成物-共晶形成物二聚体。观察到当分子内氢键被破坏时,二聚体相互作用的数量和强度显著增加,并且相互作用的类型发生了变化。这些发现表明,破坏分子内氢键通常会阻碍共晶的形成。这项理论研究为分子内氢键在黄酮类共晶形成中的作用提供了更深入的见解。