Suppr超能文献

基于特征序列的基因组挖掘揭示了细菌铁载体途径的隐藏多样性。

Feature sequence-based genome mining uncovers the hidden diversity of bacterial siderophore pathways.

机构信息

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.

Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.

出版信息

Elife. 2024 Oct 1;13:RP96719. doi: 10.7554/eLife.96719.

Abstract

Microbial secondary metabolites are a rich source for pharmaceutical discoveries and play crucial ecological functions. While tools exist to identify secondary metabolite clusters in genomes, precise sequence-to-function mapping remains challenging because neither function nor substrate specificity of biosynthesis enzymes can accurately be predicted. Here, we developed a knowledge-guided bioinformatic pipeline to solve these issues. We analyzed 1928 genomes of bacteria and focused on iron-scavenging pyoverdines as model metabolites. Our pipeline predicted 188 chemically different pyoverdines with nearly 100% structural accuracy and the presence of 94 distinct receptor groups required for the uptake of iron-loaded pyoverdines. Our pipeline unveils an enormous yet overlooked diversity of siderophores (151 new structures) and receptors (91 new groups). Our approach, combining feature sequence with phylogenetic approaches, is extendable to other metabolites and microbial genera, and thus emerges as powerful tool to reconstruct bacterial secondary metabolism pathways based on sequence data.

摘要

微生物次生代谢产物是药物发现的丰富来源,具有重要的生态功能。虽然有工具可以识别基因组中的次生代谢物簇,但精确的序列-功能映射仍然具有挑战性,因为生物合成酶的功能和底物特异性都不能准确预测。在这里,我们开发了一个知识引导的生物信息学管道来解决这些问题。我们分析了 1928 个细菌基因组,重点研究了铁掠夺性的绿脓菌素作为模型代谢物。我们的管道预测了 188 种具有近 100%结构准确性的化学上不同的绿脓菌素,以及 94 种不同的受体群,这些受体群是吸收负载铁的绿脓菌素所必需的。我们的管道揭示了大量但被忽视的铁载体(151 种新结构)和受体(91 种新群体)的多样性。我们的方法结合了特征序列和系统发育方法,可以扩展到其他代谢物和微生物属,因此成为基于序列数据重建细菌次生代谢途径的有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b76a/11444679/fbd6e1b72353/elife-96719-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验