Suppr超能文献

挖掘和表达微生物生物合成基因簇的进展。

Advances in mining and expressing microbial biosynthetic gene clusters.

作者信息

Xu Zeling, Park Tae-Jin, Cao Huiluo

机构信息

Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China.

HME Healthcare Co., Ltd, Suwon-si, Republic of Korea.

出版信息

Crit Rev Microbiol. 2023 Feb;49(1):18-37. doi: 10.1080/1040841X.2022.2036099. Epub 2022 Feb 15.

Abstract

Natural products (NPs) especially the secondary metabolites originated from microbes exhibit great importance in biomedical, industrial and agricultural applications. However, mining biosynthetic gene clusters (BGCs) to produce novel NPs has been hindered owing that a large population of environmental microbes are unculturable. In the past decade, strategies to explore BGCs directly from (meta)genomes have been established along with the fast development of high-throughput sequencing technologies and the powerful bioinformatics data-processing tools, which greatly expedited the exploitations of novel BGCs from unculturable microbes including the extremophilic microbes. In this review, we firstly summarized the popular bioinformatics tools and databases available to mine novel BGCs from (meta)genomes based on either pure cultures or pristine environmental samples. Noticeably, approaches rooted from machine learning and deep learning with focuses on the prediction of ribosomally synthesized and post-translationally modified peptides (RiPPs) were dramatically increased in recent years. Moreover, synthetic biology techniques to express the novel BGCs in culturable native microbes or heterologous hosts were introduced. This working pipeline including the discovery and biosynthesis of novel NPs will greatly advance the exploitations of the abundant but unexplored microbial BGCs.

摘要

天然产物(NPs),尤其是源自微生物的次生代谢产物,在生物医学、工业和农业应用中具有重要意义。然而,由于大量环境微生物不可培养,挖掘生物合成基因簇(BGCs)以生产新型NPs受到了阻碍。在过去十年中,随着高通量测序技术的快速发展和强大的生物信息学数据处理工具的出现,直接从(宏)基因组中探索BGCs的策略得以确立,这极大地加速了从包括极端微生物在内的不可培养微生物中挖掘新型BGCs的进程。在本综述中,我们首先总结了基于纯培养物或原始环境样本从(宏)基因组中挖掘新型BGCs可用的流行生物信息学工具和数据库。值得注意的是,近年来,源于机器学习和深度学习、专注于核糖体合成和翻译后修饰肽(RiPPs)预测的方法显著增加。此外,还介绍了在可培养的天然微生物或异源宿主中表达新型BGCs的合成生物学技术。这条包括新型NPs发现和生物合成的工作流程将极大地推动对丰富但未被探索的微生物BGCs的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验