Qin Ziyue, Chen Heming, Fang Yongcong, Wu Geng, Chen Qiang, Xue Bin, Xu Rongyao, Zheng Kai, Jiang Hongbing
Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.
Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China.
ACS Appl Mater Interfaces. 2024 Oct 1. doi: 10.1021/acsami.4c11767.
Lymphatic vessel regeneration is crucial for various tissue engineering strategies, particularly in resolving inflammation and restoring tissue homeostasis. In our study, we focused on investigating how hydrogel matrix stiffness influences lymphatic endothelial cells (LECs) in promoting lymphatic vessel regeneration. Gelatin methacrylate (GelMA) was chosen as our biomaterial due to its versatility in tissue engineering and biofabrication. We fabricated GelMA hydrogels at concentrations of 5, 7.5, and 15% (w/v) with corresponding Young's modulus values of 1.55 kPa (soft matrix), 12.02 kPa (medium matrix), and 48.50 kPa (stiff matrix). Among these, the 7.5% GelMA hydrogel exhibited optimal stiffness for promoting lymphangiogenesis. LECs seeded either on the hydrogel surface or within spontaneously formed a more stable lymphatic capillary network compared with other GelMA formulations. Furthermore, we investigated the enhancement of lymphangiogenesis by incorporating VEGF-C into the GelMA hydrogel, leveraging the synergistic effects of mechanical and chemical cues. Our results underscored the critical role of FAK-phosphorylation in this process; treatment with an FAK-specific inhibitor prevented the formation of tube-like structures by LECs and attenuated the expression of lymphatic markers. Overall, our findings highlight how the mechanical and chemical cues provided by GelMA hydrogels can effectively regulate LEC behavior toward enhanced lymphangiogenesis via the integrin/FAK mechanotransduction pathway. This study proposes a promising strategy for developing hydrogel-based scaffolds or bioinks tailored to promote lymphatic vessel regeneration in therapeutic applications.
淋巴管再生对于各种组织工程策略至关重要,尤其是在解决炎症和恢复组织内环境稳定方面。在我们的研究中,我们专注于研究水凝胶基质硬度如何影响淋巴管内皮细胞(LECs)促进淋巴管再生。由于甲基丙烯酸明胶(GelMA)在组织工程和生物制造方面的多功能性,我们选择它作为生物材料。我们制备了浓度为5%、7.5%和15%(w/v)的GelMA水凝胶,其相应的杨氏模量值分别为1.55 kPa(软基质)、12.02 kPa(中等基质)和48.50 kPa(硬基质)。其中,7.5%的GelMA水凝胶在促进淋巴管生成方面表现出最佳硬度。与其他GelMA配方相比,接种在水凝胶表面或自发形成的内部的LECs形成了更稳定的淋巴管网络。此外,我们通过将血管内皮生长因子C(VEGF-C)纳入GelMA水凝胶中,利用机械和化学信号的协同作用,研究了淋巴管生成的增强。我们的结果强调了粘着斑激酶(FAK)磷酸化在此过程中的关键作用;用FAK特异性抑制剂处理可阻止LECs形成管状结构,并减弱淋巴管标志物的表达。总体而言,我们的研究结果突出了GelMA水凝胶提供的机械和化学信号如何通过整合素/FAK机械转导途径有效调节LECs行为以增强淋巴管生成。本研究提出了一种有前景的策略,用于开发基于水凝胶的支架或生物墨水,以在治疗应用中促进淋巴管再生。