文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于长效可穿戴触觉传感器的高拉伸性、自愈合且导电的甲基丙烯酰化明胶水凝胶

Highly Stretchable, Self-Healable, and Conductive Gelatin Methacryloyl Hydrogel for Long-Lasting Wearable Tactile Sensors.

作者信息

Li Zhikang, Wang Bin, Lu Jijian, Xue Yumeng, Wang Jiaxiang, Jia Boqing, Han Gengyu, Zhao Yihe, Qureshi Muhammad Afzal Khan, Yu Lan, Zhao Kang, Li Min, Yang Ping, Lu Dejiang, Zhao Libo

机构信息

State Key Laboratory for Manufacturing System Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, Xi'an Jiaotong University, Xi'an, 710049, China.

Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264000, China.

出版信息

Adv Sci (Weinh). 2025 Aug;12(30):e02678. doi: 10.1002/advs.202502678. Epub 2025 May 29.


DOI:10.1002/advs.202502678
PMID:40439485
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12376516/
Abstract

Constructing hydrogels with both remarkable mechanical and self-healing properties is highly desirable for soft electronics, yet remains challenging due to conflicting demands on chemical bonds and polymer chain mobility. Herein, a highly stretchable, self-healing, and conductive gelatin methacryloyl (GelMA) hydrogel is developed by incorporating polyvinyl alcohol, N-(2-amino-2-oxoethyl)-2-propenamide, sodium tetraborate, and sodium chloride into GelMA, followed by a two-step polymerization process. The introduced novel interpenetrating networks, hierarchical hydrogen bonds (weak and strong H-bonds), and borate ester bonds (BEBs) synergistically improve the mechanical strength, and concurrently function as sacrificial bonds for energy dissipation under deformation. Moreover, the constructed reversible BEBs and weak H-bonds enable autonomous self-healing at room temperature. The resulting hydrogel achieves remarkable stretchability (≈160%), tensile strength (≈130 kPa), and self-healing efficiency (86%), surpassing previously reported GelMA hydrogels. Importantly, a self-healing GelMA hydrogel strain sensor is demonstrated, featuring a high gauge factor (≈3.28), ultra-low detection limit (0.1%), and excellent recovery of sensitivity (≈100%) and detection range (≈75%) after damage. Successful monitoring of subtle and large-scale human motions with both original and healed sensors highlights the device's durability and longevity. This study provides a promising approach for the rational design and practical application of GelMA hydrogels in wearable bioelectronics.

摘要

构建具有卓越机械性能和自愈性能的水凝胶对于软电子学来说是非常理想的,但由于对化学键和聚合物链流动性的要求相互冲突,这仍然具有挑战性。在此,通过将聚乙烯醇、N-(2-氨基-2-氧代乙基)-2-丙烯酰胺、硼酸钠和氯化钠加入到甲基丙烯酰化明胶(GelMA)中,然后进行两步聚合过程,开发出了一种高度可拉伸、自愈且导电的GelMA水凝胶。引入的新型互穿网络、分级氢键(弱氢键和强氢键)和硼酸酯键(BEB)协同提高了机械强度,并在变形时同时作为能量耗散的牺牲键发挥作用。此外,构建的可逆BEB和弱氢键能够在室温下实现自主自愈。所得水凝胶具有显著的拉伸性(约160%)、拉伸强度(约130 kPa)和自愈效率(86%),超过了先前报道的GelMA水凝胶。重要的是,展示了一种自愈的GelMA水凝胶应变传感器,其具有高应变系数(约3.28)、超低检测限(0.1%)以及在受损后灵敏度(约100%)和检测范围(约75%)的出色恢复能力。用原始传感器和愈合后的传感器成功监测细微和大规模人体运动突出了该器件的耐用性和寿命。这项研究为GelMA水凝胶在可穿戴生物电子学中的合理设计和实际应用提供了一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55db/12376516/65df8b547fd0/ADVS-12-e02678-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55db/12376516/4d861476ce9e/ADVS-12-e02678-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55db/12376516/67850715245d/ADVS-12-e02678-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55db/12376516/71c8b34b7e51/ADVS-12-e02678-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55db/12376516/72f7fdb4eca1/ADVS-12-e02678-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55db/12376516/65df8b547fd0/ADVS-12-e02678-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55db/12376516/4d861476ce9e/ADVS-12-e02678-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55db/12376516/67850715245d/ADVS-12-e02678-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55db/12376516/71c8b34b7e51/ADVS-12-e02678-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55db/12376516/72f7fdb4eca1/ADVS-12-e02678-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55db/12376516/65df8b547fd0/ADVS-12-e02678-g004.jpg

相似文献

[1]
Highly Stretchable, Self-Healable, and Conductive Gelatin Methacryloyl Hydrogel for Long-Lasting Wearable Tactile Sensors.

Adv Sci (Weinh). 2025-8

[2]
Ultra-Elastic, Transparent, and Conductive Gelatin/Alginate-Based Bioadhesive Hydrogel for Enhanced Human-Machine Interactive Applications.

Biomacromolecules. 2025-7-14

[3]
Ultrasensitive, highly stretchable, self-healing and robust quaternized chitosan-based conductive hydrogel for wearable sensors.

Int J Biol Macromol. 2025-8

[4]
Highly stretchable, self-healing, antibacterial, conductive, and amylopectin-enhanced hydrogels with gallium droplets loading as strain sensors.

Carbohydr Polym. 2024-10-15

[5]
PEG-engineered semi-interpenetrating network hydrogel with superior deformability and robustness for ultra-sensitive pressure sensing.

J Colloid Interface Sci. 2025-11-15

[6]
A Highly Stretchable, Conductive, and Transparent Bioadhesive Hydrogel as a Flexible Sensor for Enhanced Real-Time Human Health Monitoring.

Adv Mater. 2024-8

[7]
Starch/polyvinyl alcohol with ionic liquid/graphene oxide enabled highly tough, conductive and freezing-resistance hydrogels for multimodal wearable sensors.

Carbohydr Polym. 2023-11-15

[8]
Highly conductive, super-stretchable cellulose hydrogels with self-adhesive properties for flexible sensors.

Int J Biol Macromol. 2025-8

[9]
Polymeric ionic liquid modifier as ion-induced crosslinker and functional enhancer: Facile fabrication of multifunctional gelatin hydrogels for flexible electronics.

Int J Biol Macromol. 2025-7

[10]
Ultrastretchable, Self-Adhesive, UV-Shielding Conductive Hydrogel as a Flexible Wearable Sensor for Human-Machine Interaction.

ACS Appl Mater Interfaces. 2025-7-2

引用本文的文献

[1]
Recent Progress in Flexible Wearable Sensors Utilizing Conductive Hydrogels for Sports Applications: Characteristics, Mechanisms, and Modification Strategies.

Gels. 2025-7-30

本文引用的文献

[1]
Innovative Hydrogel Design: Tailoring Immunomodulation for Optimal Chronic Wound Recovery.

Adv Sci (Weinh). 2025-1

[2]
Matrix Stiffness of GelMA Hydrogels Regulates Lymphatic Endothelial Cells toward Enhanced Lymphangiogenesis.

ACS Appl Mater Interfaces. 2024-10-1

[3]
Highly conductive and stretchable nanostructured ionogels for 3D printing capacitive sensors with superior performance.

Nat Commun. 2024-7-31

[4]
Self-Healing Hydrogel Bioelectronics.

Adv Mater. 2024-5

[5]
Self-healing interpenetrating network hydrogel based on GelMA/alginate/nano-clay.

Int J Biol Macromol. 2023-7-1

[6]
Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink.

Biomacromolecules. 2023-6-12

[7]
Gelatin Methacryloyl Hydrogel, from Standardization, Performance, to Biomedical Application.

Adv Healthc Mater. 2023-9

[8]
Engineering the viscoelasticity of gelatin methacryloyl (GelMA) hydrogels via small "dynamic bridges" to regulate BMSC behaviors for osteochondral regeneration.

Bioact Mater. 2022-8-6

[9]
Synthesis and Properties of Biodegradable Hydrogel Based on Polysaccharide Wound Dressing.

Materials (Basel). 2023-2-6

[10]
Transparent, intrinsically stretchable cellulose nanofiber-mediated conductive hydrogel for strain and humidity sensing.

Carbohydr Polym. 2023-2-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索