Suppr超能文献

通过基底导向的人工信号进行模板化多能干细胞分化。

Templated Pluripotent Stem Cell Differentiation via Substratum-Guided Artificial Signaling.

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.

Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.

出版信息

ACS Biomater Sci Eng. 2024 Oct 14;10(10):6465-6482. doi: 10.1021/acsbiomaterials.4c00885. Epub 2024 Oct 1.

Abstract

The emerging field of synthetic morphogenesis implements synthetic biology tools to investigate the minimal cellular processes sufficient for orchestrating key developmental events. As the field continues to grow, there is a need for new tools that enable scientists to uncover nuances in the molecular mechanisms driving cell fate patterning that emerge during morphogenesis. Here, we present a platform that combines cell engineering with biomaterial design to potentiate artificial signaling in pluripotent stem cells (PSCs). This platform, referred to as PSC-MATRIX, extends the use of programmable biomaterials to PSCs competent to activate morphogen production through orthogonal signaling, giving rise to the opportunity to probe developmental events by initiating morphogenetic programs in a spatially constrained manner through non-native signaling channels. We show that the PSC-MATRIX platform enables temporal and spatial control of transgene expression in response to bulk, soluble inputs in synthetic Notch (synNotch)-engineered human PSCs for an extended culture of up to 11 days. Furthermore, we used PSC-MATRIX to regulate multiple differentiation events via material-mediated artificial signaling in engineered PSCs using the orthogonal ligand green fluorescent protein, highlighting the potential of this platform for probing and guiding fate acquisition. Overall, this platform offers a synthetic approach to interrogate the molecular mechanisms driving PSC differentiation that could be applied to a variety of differentiation protocols.

摘要

新兴的合成形态发生领域运用合成生物学工具来研究调控关键发育事件所需的最小细胞过程。随着该领域的持续发展,需要新的工具来帮助科学家揭示在形态发生过程中出现的、驱动细胞命运模式形成的分子机制中的细微差别。在这里,我们提出了一个将细胞工程与生物材料设计相结合的平台,以增强多能干细胞(PSCs)中的人工信号。这个平台被称为 PSC-MATRIX,它扩展了可编程生物材料的使用范围,使能够通过正交信号激活形态发生素产生的 PSCs 具有潜力,通过非天然信号通道以空间受限的方式启动形态发生程序,从而有机会探测发育事件。我们表明,PSC-MATRIX 平台能够在长达 11 天的时间内,通过合成 Notch(synNotch)工程化的人类 PSCs 中的 bulk、可溶性输入来实现转基因表达的时空控制。此外,我们使用 PSC-MATRIX 通过正交配体绿色荧光蛋白在工程化 PSCs 中进行材料介导的人工信号来调节多个分化事件,突出了该平台用于探测和指导命运获取的潜力。总的来说,该平台提供了一种用于探究驱动 PSC 分化的分子机制的合成方法,可应用于多种分化方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa38/11480943/e26dad5ca09c/ab4c00885_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验