Suppr超能文献

具有面维度选择和优先连接的增长单纯复形

Growing simplicial complex with face dimension selection and preferential attachment.

作者信息

Ding Mengjun, Yu Jia, Sun Weiqiang

机构信息

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200241, China.

出版信息

Chaos. 2024 Oct 1;34(10). doi: 10.1063/5.0210960.

Abstract

When simplicial complexes are used to represent higher-order systems, information regarding when and how interactions happen may be lost. In this paper, we propose the concept of temporal simplicial complexes, in which simplices with timestamps (or temporal simplices) are used to represent interactions, and faces with weights are used to represent relations. Then, we propose a growing model with two rules, face dimension selection (FDS), and preferential attachment. By properly setting the probability parameter vector q in the FDS rule, one can balance network diameter expansion and network centrality, thus attaining more flexibility in the growing process. Our theoretical analysis and simulations that followed show the generalized degree of faces of any dimension follows a power-law distribution, with a scaling component controlled by q. Our work provides a flexible growing model and can be used to study higher-order systems with temporal properties.

摘要

当单纯复形用于表示高阶系统时,关于相互作用何时以及如何发生的信息可能会丢失。在本文中,我们提出了时间单纯复形的概念,其中带时间戳的单纯形(或时间单纯形)用于表示相互作用,带权重的面用于表示关系。然后,我们提出了一个具有两个规则的增长模型,即面维度选择(FDS)和偏好依附。通过在FDS规则中适当设置概率参数向量q,可以平衡网络直径扩展和网络中心性,从而在增长过程中获得更大的灵活性。我们随后的理论分析和模拟表明,任何维度的面的广义度遵循幂律分布,其标度分量由q控制。我们的工作提供了一个灵活的增长模型,可用于研究具有时间特性的高阶系统。

相似文献

2
Emergent Hyperbolic Network Geometry.突发双曲网络几何。
Sci Rep. 2017 Feb 7;7:41974. doi: 10.1038/srep41974.
6
Weighted growing simplicial complexes.加权生长单纯复形。
Phys Rev E. 2017 Jun;95(6-1):062301. doi: 10.1103/PhysRevE.95.062301. Epub 2017 Jun 12.
7
Dense power-law networks and simplicial complexes.密集幂律网络与单纯复形。
Phys Rev E. 2018 May;97(5-1):052303. doi: 10.1103/PhysRevE.97.052303.
8
Simplicial Complex Neural Networks.单纯复形神经网络
IEEE Trans Pattern Anal Mach Intell. 2024 Jan;46(1):561-575. doi: 10.1109/TPAMI.2023.3323624. Epub 2023 Dec 5.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验