Suppr超能文献

加权生长单纯复形。

Weighted growing simplicial complexes.

机构信息

School of Mathematical Sciences, Queen Mary University of London, E1 4NS London, United Kingdom.

出版信息

Phys Rev E. 2017 Jun;95(6-1):062301. doi: 10.1103/PhysRevE.95.062301. Epub 2017 Jun 12.

Abstract

Simplicial complexes describe collaboration networks, protein interaction networks, and brain networks and in general network structures in which the interactions can include more than two nodes. In real applications, often simplicial complexes are weighted. Here we propose a nonequilibrium model for weighted growing simplicial complexes. The proposed dynamics is able to generate weighted simplicial complexes with a rich interplay between weights and topology emerging not just at the level of nodes and links, but also at the level of faces of higher dimension.

摘要

单纯复形描述了协作网络、蛋白质相互作用网络和脑网络,以及通常包含超过两个节点的相互作用的网络结构。在实际应用中,单纯复形通常是加权的。在这里,我们提出了一个加权增长单纯复形的非平衡模型。所提出的动力学能够生成加权单纯复形,其中权重和拓扑之间的丰富相互作用不仅出现在节点和链接级别,而且还出现在更高维面的级别上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验