Suppr超能文献

基于 mRNA 变量的前列腺癌无 BCR 生存预测的术前预测。

Pre-operative prediction of BCR-free survival with mRNA variables in prostate cancer.

机构信息

School of Mathematical Sciences, Western Gateway Building, University College Cork, Cork, Ireland.

Department of Mathematics and Statistics (MACSI), University of Limerick, Limerick, Ireland.

出版信息

PLoS One. 2024 Oct 1;19(10):e0311162. doi: 10.1371/journal.pone.0311162. eCollection 2024.

Abstract

Technological innovation yielded opportunities to obtain mRNA expression data for prostate cancer (PCa) patients even prior to biopsy, which can be used in a precision medicine approach to treatment decision-making. This can apply in particular to predict the risk of, and time to biochemical recurrence (BCR). Most mRNA-based models currently proposed to this end are designed for risk classification and post-operative prediction. Effective pre-operative prediction would facilitate early treatment decision-making, in particular by indicating more appropriate therapeutic pathways for patient profiles who would likely not benefit from a systematic prostatectomy regime. The aim of this study is to investigate the possibility to leverage mRNA information pre-operatively for BCR-free survival prediction. To do this, we considered time-to-event machine learning (ML) methodologies, rather than classification models at a specific survival horizon. We retrospectively analysed a cohort of 135 patients with clinical follow-up data and mRNA information comprising over 26,000 features (data accessible at NCBI GEO database, accession GSE21032). The performance of ML models including random survival forest, boosted and regularised Cox models were assessed, in terms of model discrimination, calibration, and predictive accuracy for overall, 3-year and 5-year survival, aligning with common clinical endpoints. Results showed that the inclusion of mRNA information could yield a gain in performance for pre-operative BCR prediction. ML-based time-to-event models significantly outperformed reference nomograms that used only routine clinical information with respect to all metrics considered. We believe this is the first study proposing pre-operative transcriptomics models for BCR prediction in PCa. External validation of these findings, including confirmation of the mRNA variables identified as potential key predictors in this study, could pave the way for pre-operative precision nomograms to facilitate timely personalised clinical decision-making.

摘要

技术创新为获取前列腺癌 (PCa) 患者的 mRNA 表达数据提供了机会,甚至在活检之前就可以获得,这些数据可用于精准医学治疗决策。这尤其适用于预测生化复发 (BCR) 的风险和时间。目前为此目的提出的大多数基于 mRNA 的模型旨在进行风险分类和术后预测。有效的术前预测将有助于早期治疗决策,特别是通过为不太可能从系统前列腺切除术方案中获益的患者确定更合适的治疗途径。本研究旨在探讨利用术前 mRNA 信息预测 BCR 无复发生存的可能性。为此,我们考虑了时间事件机器学习 (ML) 方法,而不是特定生存时间的分类模型。我们回顾性分析了一个包含临床随访数据和包含超过 26,000 个特征的 mRNA 信息的 135 名患者队列 (数据可在 NCBI GEO 数据库中获得,访问号 GSE21032)。评估了随机生存森林、增强和正则化 Cox 模型等 ML 模型的性能,包括模型区分度、校准度和对总生存、3 年和 5 年生存的预测准确性,与常见的临床终点保持一致。结果表明,纳入 mRNA 信息可以提高术前 BCR 预测的性能。基于 ML 的时间事件模型在所有考虑的指标上都显著优于仅使用常规临床信息的参考列线图。我们认为这是第一项提出用于 PCa BCR 预测的术前转录组学模型的研究。这些发现的外部验证,包括确认本研究中确定的潜在关键预测变量的 mRNA 变量,可以为术前精准列线图铺平道路,以促进及时的个性化临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4a4/11444391/d44d97184453/pone.0311162.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验