Suppr超能文献

High sensitivity measurement of ULF, VLF, and LF fields with a Rydberg-atom sensor.

作者信息

Lei Mingwei, Shi Meng

出版信息

Opt Lett. 2024 Oct 1;49(19):5547-5550. doi: 10.1364/OL.539090.

Abstract

Fields with frequencies below megahertz are challenging for Rydberg-atom-based measurements, due to the low-frequency electric field screening effect caused by the alkali-metal atoms adsorbed on the inner surface of the container. In this paper, we investigate electric field measurements in the ultralow frequency (ULF), very low frequency (VLF), and low frequency (LF) bands in a Cs vapor cell with built-in parallel electrodes. With optimization of the applied DC field, we achieve high-sensitive detection of the electric field at frequencies of 1 kHz, 10 kHz, and 100 kHz based on the Rydberg-atom sensor, with the minimum electric field strength down to 18.0 μV/cm, 6.9 μV/cm, and 3.0 μV/cm, respectively. The corresponding sensitivity is 5.7 μV/cm/Hz, 2.2 μV/cm/Hz, and 0.95 μV/cm/Hz for the ULF, VLF, and LF fields, which is better than a 1-cm dipole antenna. Besides, the linear dynamic range of the Rydberg-atom sensor is over 50 dB. This work presents the potential to enable more applications that utilize atomic sensing technology in the ULF, VLF, and LF fields.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验