Song Wentao, Wang Cheng, Liu Yong, Chong Kok Chan, Zhang Xinyue, Wang Tie, Zhang Yuanming, Li Bowen, Tian Jianwu, Zhang Xianhe, Wang Xinyun, Yao Bingqing, Wang Xi, Xiao Yukun, Yao Yingfang, Mao Xianwen, He Qian, Lin Zhiqun, Zou Zhigang, Liu Bin
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Eco-materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing 210093, China.
J Am Chem Soc. 2024 Oct 23;146(42):29028-29039. doi: 10.1021/jacs.4c10023. Epub 2024 Oct 1.
Solar-driven carbon dioxide (CO) reduction into C products such as ethylene represents an enticing route toward achieving carbon neutrality. However, due to sluggish electron transfer and intricate C-C coupling, it remains challenging to achieve highly efficient and selective ethylene production from CO and HO beyond capitalizing on Cu-based catalysts. Herein, we report a judicious design to attain asymmetric C-C coupling through interfacial defect-rendered tandem catalytic centers within a sulfur-vacancy-rich MoS/FeO photocatalyst sheet, enabling a robust CO photoreduction to ethylene without the need for copper, noble metals, and sacrificial agents. Specifically, interfacial S vacancies induce adjacent under-coordinated S atoms to form Fe-S bonds as a rapid electron-transfer pathway for yielding a Z-scheme band alignment. Moreover, these S vacancies further modulate the strong coupling interaction to generate a nitrogenase-analogous Mo-Fe heteronuclear unit and induce the upward shift of the d-band center. This bioinspired interface structure effectively suppresses electrostatic repulsion between neighboring *CO and *COH intermediates via d-p hybridization, ultimately facilitating an asymmetric C-C coupling to achieve a remarkable solar-to-chemical efficiency of 0.565% with a superior selectivity of 84.9% for ethylene production. Further strengthened by MoS/WO, our design unveils a promising platform for optimizing interfacial electron transfer and offers a new option for C synthesis from CO and HO using copper-free and noble metal-free catalysts.
太阳能驱动将二氧化碳(CO₂)还原为乙烯等含碳产物是实现碳中和的一条诱人途径。然而,由于电子转移缓慢和碳 - 碳偶联复杂,在不依赖铜基催化剂的情况下,从CO₂和H₂O高效且选择性地生产乙烯仍然具有挑战性。在此,我们报告了一种明智的设计,通过富含硫空位的MoS₂/Fe₂O₃光催化剂片层内的界面缺陷呈现串联催化中心来实现不对称碳 - 碳偶联,从而实现将CO₂稳健地光还原为乙烯,而无需铜、贵金属和牺牲剂。具体而言,界面硫空位诱导相邻的低配位硫原子形成Fe - S键,作为产生Z型能带排列的快速电子转移途径。此外,这些硫空位进一步调节强耦合相互作用,以生成类似固氮酶的Mo - Fe异核单元,并诱导d带中心向上移动。这种受生物启发的界面结构通过d - p杂化有效地抑制了相邻CO和COH中间体之间的静电排斥,最终促进不对称碳 - 碳偶联,实现了0.565%的卓越太阳能到化学能转换效率以及对乙烯生产84.9%的优异选择性。通过MoS₂/WO₃进一步强化后,我们的设计揭示了一个用于优化界面电子转移的有前景的平台,并为使用无铜和无贵金属催化剂从CO₂和H₂O合成碳提供了新的选择。