Suppr超能文献

基于流的截断去噪扩散模型在磁共振波谱成像超分辨率中的应用。

A Flow-based Truncated Denoising Diffusion Model for super-resolution Magnetic Resonance Spectroscopic Imaging.

机构信息

Department of Electrical Engineering, Yale University, New Haven, CT, USA.

Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China.

出版信息

Med Image Anal. 2025 Jan;99:103358. doi: 10.1016/j.media.2024.103358. Epub 2024 Sep 27.

Abstract

Magnetic Resonance Spectroscopic Imaging (MRSI) is a non-invasive imaging technique for studying metabolism and has become a crucial tool for understanding neurological diseases, cancers and diabetes. High spatial resolution MRSI is needed to characterize lesions, but in practice MRSI is acquired at low resolution due to time and sensitivity restrictions caused by the low metabolite concentrations. Therefore, there is an imperative need for a post-processing approach to generate high-resolution MRSI from low-resolution data that can be acquired fast and with high sensitivity. Deep learning-based super-resolution methods provided promising results for improving the spatial resolution of MRSI, but they still have limited capability to generate accurate and high-quality images. Recently, diffusion models have demonstrated superior learning capability than other generative models in various tasks, but sampling from diffusion models requires iterating through a large number of diffusion steps, which is time-consuming. This work introduces a Flow-based Truncated Denoising Diffusion Model (FTDDM) for super-resolution MRSI, which shortens the diffusion process by truncating the diffusion chain, and the truncated steps are estimated using a normalizing flow-based network. The network is conditioned on upscaling factors to enable multi-scale super-resolution. To train and evaluate the deep learning models, we developed a H-MRSI dataset acquired from 25 high-grade glioma patients. We demonstrate that FTDDM outperforms existing generative models while speeding up the sampling process by over 9-fold compared to the baseline diffusion model. Neuroradiologists' evaluations confirmed the clinical advantages of our method, which also supports uncertainty estimation and sharpness adjustment, extending its potential clinical applications.

摘要

磁共振波谱成像(MRSI)是一种用于研究代谢的非侵入性成像技术,已成为理解神经疾病、癌症和糖尿病的重要工具。高空间分辨率 MRSI 用于描述病变,但由于代谢物浓度低导致的时间和灵敏度限制,实际上 MRSI 是在低分辨率下采集的。因此,迫切需要一种后处理方法,以便从低分辨率数据中生成高分辨率 MRSI,这种方法可以快速采集并且具有高灵敏度。基于深度学习的超分辨率方法在提高 MRSI 的空间分辨率方面提供了有希望的结果,但它们仍然有限制,无法生成准确和高质量的图像。最近,扩散模型在各种任务中展示了比其他生成模型更优越的学习能力,但从扩散模型中进行采样需要迭代大量的扩散步骤,这很耗时。本工作引入了一种用于超分辨率 MRSI 的基于流的截断去噪扩散模型(FTDDM),该模型通过截断扩散链来缩短扩散过程,并且使用基于归一化流的网络来估计截断步骤。该网络条件化于上采样因子,以实现多尺度超分辨率。为了训练和评估深度学习模型,我们开发了一个从 25 名高级别胶质瘤患者中采集的 H-MRSI 数据集。我们证明 FTDDM 优于现有生成模型,同时与基线扩散模型相比,采样过程加快了 9 倍以上。神经放射科医生的评估证实了我们方法的临床优势,该方法还支持不确定性估计和锐度调整,扩展了其潜在的临床应用。

相似文献

引用本文的文献

1
Generative artificial intelligence in diabetes healthcare.糖尿病医疗保健中的生成式人工智能。
iScience. 2025 Jul 5;28(8):113051. doi: 10.1016/j.isci.2025.113051. eCollection 2025 Aug 15.

本文引用的文献

2
Diffusion models in medical imaging: A comprehensive survey.扩散模型在医学成像中的应用:全面综述。
Med Image Anal. 2023 Aug;88:102846. doi: 10.1016/j.media.2023.102846. Epub 2023 May 23.
4
Image Super-Resolution via Iterative Refinement.通过迭代细化实现图像超分辨率
IEEE Trans Pattern Anal Mach Intell. 2023 Apr;45(4):4713-4726. doi: 10.1109/TPAMI.2022.3204461. Epub 2023 Mar 7.
7
Score-based diffusion models for accelerated MRI.基于分数的扩散模型在 MRI 加速中的应用。
Med Image Anal. 2022 Aug;80:102479. doi: 10.1016/j.media.2022.102479. Epub 2022 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验