Li Xianqi, Strasser Bernhard, Neuberger Ulf, Vollmuth Philipp, Bendszus Martin, Wick Wolfgang, Dietrich Jorg, Batchelor Tracy T, Cahill Daniel P, Andronesi Ovidiu C
A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.
Neurooncol Adv. 2022 May 24;4(1):vdac071. doi: 10.1093/noajnl/vdac071. eCollection 2022 Jan-Dec.
Magnetic resonance spectroscopic imaging (MRSI) can be used in glioma patients to map the metabolic alterations associated with mutations that are central criteria for glioma diagnosis. The aim of this study was to achieve super-resolution (SR) MRSI using deep learning to image tumor metabolism in patients with mutant IDH glioma.
We developed a deep learning method based on generative adversarial network (GAN) using Unet as generator network to upsample MRSI by a factor of 4. Neural networks were trained on simulated metabolic images from 75 glioma patients. The performance of deep neuronal networks was evaluated on MRSI data measured in 20 glioma patients and 10 healthy controls at 3T with a whole-brain 3D MRSI protocol optimized for detection of d-2-hydroxyglutarate (2HG). To further enhance structural details of metabolic maps we used prior information from high-resolution anatomical MR imaging. SR MRSI was compared to ground truth by Mann-Whitney -test of peak signal-to-noise ratio (PSNR), structure similarity index measure (SSIM), feature-based similarity index measure (FSIM), and mean opinion score (MOS).
Deep learning SR improved PSNR by 17%, SSIM by 5%, FSIM by 7%, and MOS by 30% compared to conventional interpolation methods. In mutant IDH glioma patients proposed method provided the highest resolution for 2HG maps to clearly delineate tumor margins and tumor heterogeneity.
Our results indicate that proposed deep learning methods are effective in enhancing spatial resolution of metabolite maps. Patient results suggest that this may have great clinical potential for image guided precision oncology therapy.
磁共振波谱成像(MRSI)可用于胶质瘤患者,以绘制与胶质瘤诊断核心标准相关的基因突变所引起的代谢改变图谱。本研究的目的是利用深度学习实现超分辨率(SR)MRSI,以对异柠檬酸脱氢酶(IDH)基因突变型胶质瘤患者的肿瘤代谢进行成像。
我们开发了一种基于生成对抗网络(GAN)的深度学习方法,使用Unet作为生成器网络将MRSI上采样4倍。神经网络在来自75例胶质瘤患者的模拟代谢图像上进行训练。在3T条件下,采用优化用于检测d-2-羟基戊二酸(2HG)的全脑3D MRSI协议,对20例胶质瘤患者和10名健康对照者测量的MRSI数据评估深度神经网络的性能。为了进一步增强代谢图谱的结构细节,我们使用了来自高分辨率解剖磁共振成像的先验信息。通过对峰值信噪比(PSNR)、结构相似性指数测量(SSIM)、基于特征的相似性指数测量(FSIM)和平均意见得分(MOS)进行曼-惠特尼检验,将SR MRSI与真实情况进行比较。
与传统插值方法相比,深度学习超分辨率使PSNR提高了17%,SSIM提高了5%,FSIM提高了7%,MOS提高了30%。在IDH基因突变型胶质瘤患者中,所提出的方法为2HG图谱提供了最高分辨率,能够清晰勾勒肿瘤边界和肿瘤异质性。
我们的结果表明,所提出的深度学习方法在提高代谢物图谱的空间分辨率方面是有效的。患者结果表明,这可能在图像引导的精准肿瘤治疗中具有巨大的临床潜力。