Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
Columbia University, Irving Medical Center, Department of Pathology and Cell Biology, New York, NY 10032, USA.
Curr Biol. 2024 Nov 4;34(21):4853-4868.e6. doi: 10.1016/j.cub.2024.09.004. Epub 2024 Sep 30.
During cell division, chromosomes build kinetochores that attach to spindle microtubules. Kinetochores usually form at the centromeres, which contain CENP-A nucleosomes. The outer kinetochore, which is the core attachment site for microtubules, is composed of the KMN network (Knl1c, Mis12c, and Ndc80c complexes) and is recruited downstream of CENP-A and its partner CENP-C. In C. elegans oocytes, kinetochores have been suggested to form independently of CENP-A nucleosomes. Yet kinetochore formation requires CENP-C, which acts in parallel to the nucleoporin MEL-28. Here, we used a combination of RNAi and Degron-based depletion of CENP-A (or downstream CENP-C) to demonstrate that both proteins are in fact responsible for a portion of outer kinetochore assembly during meiosis I and are essential for accurate chromosome segregation. The remaining part requires the coordinated action of KNL-2 (ortholog of human M18BP1) and of the nucleoporin MEL-28. Accordingly, co-depletion of CENP-A (or CENP-C) and KNL-2 (or MEL-28) prevented outer kinetochore assembly in oocytes during meiosis I. We further found that KNL-2 and MEL-28 are interdependent for kinetochore localization. Using engineered mutants, we demonstrated that KNL-2 recruits MEL-28 at meiotic kinetochores through a specific N-terminal domain, independently of its canonical CENP-A loading factor activity. Finally, we found that meiosis II outer kinetochore assembly was solely dependent on the canonical CENP-A/CENP-C pathway. Thus, like in most cells, outer kinetochore assembly in C. elegans oocytes depends on centromeric chromatin. However, during meiosis I, an additional KNL-2 and MEL-28 pathway acts in a non-redundant manner and in parallel to canonical centromeric chromatin.
在细胞分裂过程中,染色体构建动粒,动粒附着于纺锤体微管。动粒通常在着丝粒形成,着丝粒包含 CENP-A 核小体。外动粒是微管的核心附着位点,由 KMN 网络(Knl1c、Mis12c 和 Ndc80c 复合物)组成,并募集在 CENP-A 及其伴侣 CENP-C 下游。在 C. elegans 卵母细胞中,动粒的形成被认为不依赖于 CENP-A 核小体。然而,动粒的形成需要 CENP-C,它与核孔蛋白 MEL-28 平行作用。在这里,我们使用 RNAi 和 Degron 基于的 CENP-A(或下游 CENP-C)耗竭的组合来证明这两种蛋白质实际上都负责减数分裂 I 中外动粒组装的一部分,并且对于准确的染色体分离是必不可少的。其余部分需要 KNL-2(人类 M18BP1 的同源物)和核孔蛋白 MEL-28 的协调作用。因此,CENP-A(或 CENP-C)和 KNL-2(或 MEL-28)的共耗竭阻止了减数分裂 I 期间卵母细胞中外动粒的组装。我们进一步发现 KNL-2 和 MEL-28 对于动粒定位是相互依赖的。使用工程突变体,我们证明 KNL-2 通过特定的 N 端结构域在减数分裂动粒上募集 MEL-28,而不依赖其典型的 CENP-A 加载因子活性。最后,我们发现减数分裂 II 中外动粒的组装仅依赖于典型的 CENP-A/CENP-C 途径。因此,与大多数细胞一样,C. elegans 卵母细胞中外动粒的组装依赖于着丝粒染色质。然而,在减数分裂 I 期间,一个额外的 KNL-2 和 MEL-28 途径以非冗余的方式平行于典型的着丝粒染色质起作用。