Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
Cell Rep Med. 2024 Oct 15;5(10):101752. doi: 10.1016/j.xcrm.2024.101752. Epub 2024 Sep 30.
Cyclin-dependent kinases 12/13 play pivotal roles in orchestrating transcription elongation, DNA damage response, and maintenance of genomic stability. Biallelic CDK12 loss has been documented in various malignancies. Here, we develop a selective CDK12/13 PROTAC degrader, YJ9069, which effectively inhibits proliferation in subsets of prostate cancer cells preferentially over benign immortalized cells. CDK12/13 degradation rapidly triggers gene-length-dependent transcriptional elongation defects, leading to DNA damage and cell-cycle arrest. In vivo, YJ9069 significantly suppresses prostate tumor growth. Modifications of YJ9069 yielded an orally bioavailable CDK12/13 degrader, YJ1206, which exhibits comparable efficacy with significantly less toxicity. To identify pathways synthetically lethal upon CDK12/13 degradation, phosphorylation pathway arrays were performed using cell lines treated with YJ1206. Interestingly, degradation or genetic knockdown of CDK12/13 led to activation of the AKT pathway. Targeting CDK12/13 for degradation, in conjunction with inhibiting the AKT pathway, resulted in a synthetic lethal effect in preclinical prostate cancer models.
周期蛋白依赖性激酶 12/13 在协调转录延伸、DNA 损伤反应和维持基因组稳定性方面发挥着关键作用。双等位基因 CDK12 的缺失已在各种恶性肿瘤中得到证实。在这里,我们开发了一种选择性的 CDK12/13 PROTAC 降解剂 YJ9069,它能有效地抑制前列腺癌细胞系的增殖,而对良性永生化细胞的抑制作用较弱。CDK12/13 的降解会迅速引发基因长度依赖性转录延伸缺陷,导致 DNA 损伤和细胞周期停滞。在体内,YJ9069 显著抑制前列腺肿瘤的生长。对 YJ9069 进行修饰得到了一种可口服的 CDK12/13 降解剂 YJ1206,它具有相当的疗效,而毒性明显降低。为了鉴定 CDK12/13 降解后合成致死的途径,我们用 YJ1206 处理细胞系,进行磷酸化途径分析。有趣的是,CDK12/13 的降解或基因敲低导致 AKT 途径的激活。针对 CDK12/13 的降解与抑制 AKT 途径相结合,在临床前前列腺癌模型中产生了合成致死效应。