Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.
Transl Psychiatry. 2024 Oct 1;14(1):399. doi: 10.1038/s41398-024-03117-1.
This study investigated how resting-state functional connectivity (rsFC) of the subgenual anterior cingulate cortex (sgACC) predicts antidepressant response in patients with major depressive disorder (MDD). Eighty-seven medication-free MDD patients underwent baseline resting-state functional MRI scans. After 12 weeks of escitalopram treatment, patients were classified into remission depression (RD, n = 42) and nonremission depression (NRD, n = 45) groups. We conducted two analyses: a voxel-wise rsFC analysis using sgACC as a seed to identify group differences, and a prediction model based on the sgACC rsFC map to predict treatment efficacy. Haufe transformation was used to interpret the predictive rsFC features. The RD group showed significantly higher rsFC between the sgACC and regions in the fronto-parietal network (FPN), including the bilateral dorsolateral prefrontal cortex (DLPFC) and bilateral inferior parietal lobule (IPL), compared to the NRD group. These sgACC rsFC measures correlated positively with symptom improvement. Baseline sgACC rsFC also significantly predicted treatment response after 12 weeks, with a mean accuracy of 72.64% (p < 0.001), mean area under the curve of 0.74 (p < 0.001), mean specificity of 0.82, and mean sensitivity of 0.70 in 10-fold cross-validation. The predictive voxels were mainly within the FPN. The rsFC between the sgACC and FPN is a valuable predictor of antidepressant response in MDD patients. These findings enhance our understanding of the neurobiological mechanisms underlying treatment response and could help inform personalized treatment strategies for MDD.
这项研究调查了亚皮质前扣带皮层(sgACC)静息态功能连接(rsFC)如何预测重度抑郁症(MDD)患者的抗抑郁反应。87 名未服用药物的 MDD 患者接受了基线静息态功能磁共振成像扫描。在依西酞普兰治疗 12 周后,患者被分为缓解抑郁(RD,n=42)和未缓解抑郁(NRD,n=45)组。我们进行了两项分析:使用 sgACC 作为种子进行基于体素的 rsFC 分析,以识别组间差异,以及基于 sgACC rsFC 图的预测模型,以预测治疗效果。Haufe 变换用于解释预测性 rsFC 特征。与 NRD 组相比,RD 组 sgACC 与额顶网络(FPN)中的区域之间的 rsFC 显著升高,包括双侧背外侧前额叶皮层(DLPFC)和双侧顶下小叶(IPL)。这些 sgACC rsFC 测量值与症状改善呈正相关。基线 sgACC rsFC 也显著预测 12 周后的治疗反应,在 10 倍交叉验证中,平均准确率为 72.64%(p<0.001),平均曲线下面积为 0.74(p<0.001),平均特异性为 0.82,敏感性为 0.70。预测的体素主要位于 FPN 内。sgACC 与 FPN 之间的 rsFC 是 MDD 患者抗抑郁反应的有价值预测指标。这些发现增强了我们对治疗反应神经生物学机制的理解,并可能有助于为 MDD 提供个性化的治疗策略。