Suppr超能文献

提高肌球蛋白体外运动检测实验的稳定性,以满足芯片实验室的可持续应用。

Improved longevity of actomyosin in vitro motility assays for sustainable lab-on-a-chip applications.

机构信息

Department of Chemistry and Biomedical Sciences, Linnaeus University, 39182, Kalmar, Sweden.

出版信息

Sci Rep. 2024 Oct 1;14(1):22768. doi: 10.1038/s41598-024-73457-x.

Abstract

In the in vitro motility assay (IVMA), actin filaments are observed while propelled by surface-adsorbed myosin motor fragments such as heavy meromyosin (HMM). In addition to fundamental studies, the IVMA is the basis for a range of lab-on-a-chip applications, e.g. transport of cargoes in nanofabricated channels in nanoseparation/biosensing or the solution of combinatorial mathematical problems in network-based biocomputation. In these applications, prolonged myosin function is critical as is the potential to repeatedly exchange experimental solutions without functional deterioration. We here elucidate key factors of importance in these regards. Our findings support a hypothesis that early deterioration in the IVMA is primarily due to oxygen entrance into in vitro motility assay flow cells. In the presence of a typically used oxygen scavenger mixture (glucose oxidase, glucose, and catalase), this leads to pH reduction by a glucose oxidase-catalyzed reaction between glucose and oxygen but also contributes to functional deterioration by other mechanisms. Our studies further demonstrate challenges associated with evaporation and loss of actin filaments with time. However, over 8 h at 21-26 °C, there is no significant surface desorption or denaturation of HMM if solutions are exchanged manually every 30 min. We arrive at an optimized protocol with repeated exchange of carefully degassed assay solution of 45 mM ionic strength, at 30 min intervals. This is sufficient to maintain the high-quality function in an IVMA over 8 h at 21-26 °C, provided that fresh actin filaments are re-supplied in connection with each assay solution exchange. Finally, we demonstrate adaptation to a microfluidic platform and identify challenges that remain to be solved for real lab-on-a-chip applications.

摘要

在体外运动分析(IVMA)中,肌球蛋白运动片段(如重酶解肌球蛋白(HMM))吸附在表面上,推动肌动蛋白丝。除了基础研究,IVMA 还是一系列芯片实验室应用的基础,例如在纳米分离/生物传感中纳米通道内货物的运输,或者在基于网络的生物计算中解决组合数学问题。在这些应用中,肌球蛋白的功能延长和能够在不损害功能的情况下反复更换实验溶液是至关重要的。在这里,我们阐明了这些方面的关键因素。我们的发现支持了这样一种假设,即在 IVMA 中早期恶化主要是由于氧气进入体外运动分析流动池。在通常使用的氧气清除混合物(葡萄糖氧化酶、葡萄糖和过氧化氢酶)存在的情况下,葡萄糖和氧气之间的葡萄糖氧化酶催化反应导致 pH 值降低,但也通过其他机制导致功能恶化。我们的研究还进一步证明了与蒸发和肌动蛋白丝随时间流失相关的挑战。然而,如果每隔 30 分钟手动更换溶液,在 21-26°C 下超过 8 小时,不会出现明显的 HMM 表面解吸或变性。我们得出了一个优化的方案,每隔 30 分钟重复交换精心脱气的 45mM 离子强度的测定溶液。如果在每次测定溶液更换时重新供应新鲜的肌动蛋白丝,这足以在 21-26°C 下保持高质量的 IVMA 功能超过 8 小时。最后,我们展示了对微流控平台的适应,并确定了在真正的芯片实验室应用中仍然需要解决的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0a/11445438/ea04fc0a1982/41598_2024_73457_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验