Albet-Torres Nuria, O'Mahony John, Charlton Christy, Balaz Martina, Lisboa Patricia, Aastrup Teodor, Månsson Alf, Nicholls Ian A
Department of Chemistry and Biomedical Sciences, University of Kalmar, SE-391 82 Kalmar, Sweden.
Langmuir. 2007 Oct 23;23(22):11147-56. doi: 10.1021/la7008682. Epub 2007 Aug 15.
The in vitro motility assay is valuable for fundamental studies of actomyosin function and has recently been combined with nanostructuring techniques for the development of nanotechnological applications. However, the limited understanding of the interaction mechanisms between myosin motor fragments (heavy meromyosin, HMM) and artificial surfaces hampers the development as well as the interpretation of fundamental studies. Here we elucidate the HMM-surface interaction mechanisms for a range of negatively charged surfaces (silanized glass and SiO2), which is relevant both to nanotechnology and fundamental studies. The results show that the HMM-propelled actin filament sliding speed (after a single injection of HMM, 120 microg/mL) increased with the contact angle of the surfaces (in the range of 20-80 degrees). However, quartz crystal microbalance (QCM) studies suggested a reduction in the adsorption of HMM (with coupled water) under these conditions. This result and actin filament binding data, together with previous measurements of the HMM density (Sundberg, M.; Balaz, M.; Bunk, R.; Rosengren-Holmberg, J. P.; Montelius, L.; Nicholls, I. A.; Omling, P.; Tågerud, S.; Månsson, A. Langmuir 2006, 22, 7302-7312. Balaz, M.; Sundberg, M.; Persson, M.; Kvassman, J.; Månsson, A. Biochemistry 2007, 46, 7233-7251), are consistent with (1) an HMM monolayer and (2) different HMM configurations at different contact angles of the surface. More specifically, the QCM and in vitro motility assay data are consistent with a model where the molecules are adsorbed either via their flexible C-terminal tail part (HMMC) or via their positively charged N-terminal motor domain (HMMN) without other surface contact points. Measurements of zeta potentials suggest that an increased contact angle is correlated with a reduced negative charge of the surfaces. As a consequence, the HMMC configuration would be the dominant configuration at high contact angles but would be supplemented with electrostatically adsorbed HMM molecules (HMMN configuration) at low contact angles. This would explain the higher initial HMM adsorption (from probability arguments) under the latter conditions. Furthermore, because the HMMN mode would have no actin binding it would also account for the lower sliding velocity at low contact angles. The results are compared to previous studies of the microtubule-kinesin system and are also discussed in relation to fundamental studies of actomyosin and nanotechnological developments and applications.
体外运动分析对于肌动球蛋白功能的基础研究具有重要价值,并且最近已与纳米结构技术相结合以开发纳米技术应用。然而,对肌球蛋白运动片段(重酶解肌球蛋白,HMM)与人工表面之间相互作用机制的了解有限,这阻碍了基础研究的发展及其解释。在此,我们阐明了一系列带负电荷表面(硅烷化玻璃和SiO₂)的HMM-表面相互作用机制,这与纳米技术和基础研究都相关。结果表明,HMM推动的肌动蛋白丝滑动速度(单次注射120μg/mL的HMM后)随着表面接触角(在20 - 80度范围内)的增加而增加。然而,石英晶体微天平(QCM)研究表明在这些条件下HMM(结合水)的吸附减少。这一结果和肌动蛋白丝结合数据,连同先前对HMM密度的测量(桑德伯格,M.;巴拉兹,M.;邦克,R.;罗森格伦 - 霍尔姆贝里,J.P.;蒙特柳斯,L.;尼科尔斯,I.A.;奥姆林,P.;塔格鲁德,S.;曼松,A.《朗缪尔》2006年,22卷,7302 - 7312页。巴拉兹,M.;桑德伯格,M.;佩尔松,M.;克瓦斯曼,J.;曼松,A.《生物化学》2007年,46卷,7233 - 7251页),与(1)一个HMM单分子层和(2)在表面不同接触角下不同的HMM构型一致。更具体地说,QCM和体外运动分析数据与一个模型一致,在该模型中分子要么通过其柔性的C末端尾部(HMMC)吸附,要么通过其带正电荷的N末端运动结构域(HMMN)吸附,而没有其他表面接触点。ζ电位的测量表明接触角的增加与表面负电荷的减少相关。因此,HMMC构型在高接触角时将是主要构型,但在低接触角时将由静电吸附的HMM分子(HMMN构型)补充。这将解释在后者条件下更高的初始HMM吸附(基于概率论据)。此外,因为HMMN模式不会与肌动蛋白结合,这也将解释在低接触角时较低的滑动速度。将这些结果与先前对微管 - 驱动蛋白系统的研究进行了比较,并就肌动球蛋白的基础研究以及纳米技术的发展和应用进行了讨论。