Suppr超能文献

一种优化的工具变量选择方法,用于提高关联研究中的因果估计。

An optimized instrument variable selection approach to improve causality estimation in association studies.

机构信息

Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan, 342030, India.

School of Artificial Intelligence and Data Science, Indian Institute of Technology Jodhpur, Rajasthan, 342030, India.

出版信息

Sci Rep. 2024 Oct 1;14(1):22781. doi: 10.1038/s41598-024-73970-z.

Abstract

Mendelian randomization (MR) is an emerging tool for inferring causality in genetic epidemiology. MR studies suffer bias from weak genetic instrument variables (IVs) and horizontal pleiotropy. We introduce a robust integrative framework strictly adhering with STROBE-MR guidelines to improve causality inference through MR studies. We implemented novel t-statistics-based criteria to improve the reliability of selected IVs followed by various MR methods. Further, we include sensitivity analyses to remove horizontal-pleiotropy bias. For functional validation, we perform enrichment analysis of identified causal SNPs. We demonstrate effectiveness of our proposed approach on 5 different MR datasets selected from diverse populations. Our pipeline outperforms its counterpart MR analyses using default parameters on these datasets. Notably, we found a significant association between total cholesterol and coronary artery disease (P = 1.16 × 10) in a single-sample dataset using our pipeline. Contrarily, this same association was deemed ambiguous while using default parameters. Moreover, in a two-sample dataset, we uncover 13 new causal SNPs with enhanced statistical significance (P = 1.06 × 10) for liver-iron-content and liver-cell-carcinoma. Likewise, these SNPs remained undetected using the default parameters (P = 7.58 × 10). Furthermore, our analysis confirmed previously known pathways, such as hyperlipidemia in heart diseases and gene ME1 in liver cancer. In conclusion, we propose a robust and powerful framework to infer causality across diverse populations and easily adaptable to different diseases.

摘要

孟德尔随机化(MR)是遗传流行病学中推断因果关系的一种新兴工具。MR 研究受到弱遗传工具变量(IVs)和水平多效性的影响。我们引入了一个严格遵循 STROBE-MR 指南的稳健综合框架,通过 MR 研究提高因果推断的可靠性。我们实施了基于新 t 统计量的标准,以提高选定 IVs 的可靠性,然后使用各种 MR 方法。此外,我们还包括敏感性分析来消除水平多效性偏差。为了功能验证,我们对确定的因果 SNP 进行富集分析。我们在来自不同人群的 5 个不同的 MR 数据集上展示了我们提出的方法的有效性。在这些数据集上,我们的管道优于使用默认参数的对照 MR 分析。值得注意的是,我们使用我们的管道在一个单样本数据集中发现了总胆固醇和冠心病之间的显著关联(P = 1.16×10)。相反,使用默认参数时,这种关联被认为是模棱两可的。此外,在一个两样本数据集中,我们发现了 13 个新的因果 SNP,它们与肝铁含量和肝癌的相关性更强,统计意义更显著(P = 1.06×10)。同样,这些 SNP 使用默认参数(P = 7.58×10)无法检测到。此外,我们的分析证实了先前已知的途径,如心脏病中的高脂血症和肝癌中的基因 ME1。总之,我们提出了一个强大的、稳健的框架,可以在不同人群中推断因果关系,并且易于适应不同的疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99de/11445377/48d7e5549929/41598_2024_73970_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验