Suppr超能文献

基于人工智能方法的超临界 CO 体系内药物溶解度的优化的数值模拟。

Optimization of drug solubility inside the supercritical CO system via numerical simulation based on artificial intelligence approach.

机构信息

Department of Human Anatomy and Embryology, Pu Ai Medical School, Shaoyang University, Shaoyang, 422000, Hunan, China.

The Second Affiliated Hospital of Shaoyang University, Shaoyang University, Shaoyang, 422000, Hunan, China.

出版信息

Sci Rep. 2024 Oct 1;14(1):22779. doi: 10.1038/s41598-024-74553-8.

Abstract

In this research paper, we explored the predictive capabilities of three different models of Polynomial Regression (PR), Extreme Gradient Boosting (XGB), and LASSO to estimate the density of supercritical carbon dioxide (SC-CO) and the solubility of niflumic acid as functions of the input variables of temperature and pressure. The optimization of hyperparameters for these models is achieved using the innovative Barnacles Mating Optimizer (BMO) algorithm. For SC-CO density estimation, PR exhibits remarkable accuracy, showing an R-squared value of 0.99207 for data fitting. XGB performs admirably with an R of 0.92673, while LASSO model demonstrates good predictive ability, showing an R of 0.81917. Furthermore, we assess the models' performance in predicting the solubility of niflumic acid. PR exhibits excellent predictive capabilities with an R of 0.96949. XGB also delivers strong performance, yielding an R-squared score of 0.92961. LASSO performs well, achieving an R-squared score of 0.82094. The results indicated promising performance of machine learning models and optimizer in estimating drug solubility in supercritical CO as the solvent applicable for pharmaceutical industry.

摘要

在本研究论文中,我们探索了三种不同的多项式回归(PR)、极端梯度提升(XGB)和 LASSO 模型的预测能力,以估计超临界二氧化碳(SC-CO)的密度和作为温度和压力输入变量的 niflumic 酸的溶解度。这些模型的超参数优化是使用创新的 Barnacles Mating Optimizer(BMO)算法实现的。对于 SC-CO 密度估计,PR 表现出显著的准确性,数据拟合的 R-squared 值为 0.99207。XGB 的 R 值为 0.92673,表现出色,而 LASSO 模型表现出良好的预测能力,R 值为 0.81917。此外,我们评估了模型在预测 niflumic 酸溶解度方面的性能。PR 具有出色的预测能力,R 值为 0.96949。XGB 也表现出强劲的性能,R-squared 得分为 0.92961。LASSO 表现良好,R-squared 得分为 0.82094。结果表明,机器学习模型和优化器在估计药物在超临界 CO 中的溶解度方面具有良好的性能,这是适用于制药行业的溶剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6353/11445554/df47aba6abbf/41598_2024_74553_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验