Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
Sci Rep. 2024 Sep 17;14(1):21677. doi: 10.1038/s41598-024-73029-z.
Supercritical fluids (SCFs) can be used to prepare drugs nanoparticles with improved solubility. SCFs have shown superior advantages in pharmaceutical industry as an environmentally friendly alternative to toxic/harmful organic solvents. They possess gas-like transport characteristics and liquid-like solvation power for solutes. Evaluation of chemotherapeutic drugs' solubility in supercritical carbon dioxide (SCCO) has been recently an attractive subject for developing this method in pharmaceutical sector. To reach this purpose, the utilization of accurate models is of great necessity to estimate experimental-based solubility data. In this paper, the authors tried to employ machine learning (ML) approaches to estimate the solubility of Letrozole (LET) drug as chemotherapeutic agent and correlate its values in wide ranges of temperature and pressure. To do this, PAR (Passive Aggressive Regression), RF (Random Forest), and RBF-SVM are the models used (Support Vector Machine with RBF kernel). These models optimized in terms of their hyper-parameters using GA algorithm. The optimized PAR, RF, RBF-SVM models obtained coefficients of determination (R-squared) of 0.8277, 0.9534, and 0.9947. Also, the MSE error rate of the models are 0.1342, 0.0305, and 0.0045, in the same order. The final result of the evaluations shows the optimized RBF-SVM model as the most appropriate model in this research. The model exhibits a maximum prediction error of 0.1289.
超临界流体(SCFs)可用于制备溶解度提高的药物纳米粒子。超临界流体作为替代有毒/有害有机溶剂的环保替代品,在制药行业具有卓越的优势。它们具有气态的传输特性和液态的溶解能力。最近,评估化疗药物在超临界二氧化碳(SCCO)中的溶解度已成为在制药领域开发该方法的一个有吸引力的课题。为了达到这个目的,需要使用准确的模型来估计基于实验的溶解度数据。在本文中,作者试图使用机器学习(ML)方法来估计作为化疗药物的来曲唑(LET)药物的溶解度,并关联其在宽温度和压力范围内的值。为此,使用了 PAR(被动攻击回归)、RF(随机森林)和 RBF-SVM(径向基函数支持向量机)模型(具有 RBF 核的支持向量机)。这些模型使用 GA 算法优化了其超参数。优化后的 PAR、RF、RBF-SVM 模型的决定系数(R 平方)分别为 0.8277、0.9534 和 0.9947。此外,模型的均方误差(MSE)误差率分别为 0.1342、0.0305 和 0.0045。评估的最终结果表明,优化后的 RBF-SVM 模型是本研究中最合适的模型。该模型的最大预测误差为 0.1289。