Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Sci Rep. 2024 Oct 1;14(1):22844. doi: 10.1038/s41598-024-73584-5.
Endothelial cell dysfunction can lead to various vascular diseases. Blood flow disorder is a common symptom of vascular diseases. Regenerative angiogenesis, which involves transplanting vascular cells or stem cells into the body to shape new vasculature, can be a good therapeutic strategy. However, there are several limitations to using autologous cells from the patients themselves. We sought to investigate the new vascular cells that can play a role in the formation of angiogenesis in vivo using stem cells from alternative animals suitable for cellular therapy. Porcine is an optimal animal model for xenotransplantation owing to its physiological similarity to humans. We used differentiated porcine endothelial cells (pECs) as a therapeutic strategy to restore vessel function. Differentiated pECs formed vessel-like structures in mice, distinguishing them from stem cells. MMPs activity and migration assays indicated that differentiated pECs possessed angiogenic potential. Tube formation and 3D spheroid sprouting assays further confirmed the angiogenic phenotype of the differentiated pECs. Immunofluorescence and immunoprecipitation analyses revealed claudin-mediated tight junctions and connexin 43-mediated gap junctions between human ECs and differentiated pECs. Additionally, the movement of small RNA from human ECs to differentiated pECs was observed under co-culture conditions. Our findings demonstrated the in vivo viability and angiogenetic potential of differentiated pECs and highlighted the potential for intercellular communication between human and porcine ECs. These results suggest that transplanted cells in vascular regeneration completed after cell therapy have the potential to achieve intercellular communication within the body.
内皮细胞功能障碍可导致多种血管疾病。血流紊乱是血管疾病的常见症状。再生血管生成,即通过将血管细胞或干细胞移植到体内来形成新的血管,可以作为一种很好的治疗策略。然而,使用来自患者自身的自体细胞存在一些局限性。我们试图利用适合细胞治疗的替代动物的干细胞来研究体内参与血管生成形成的新血管细胞。猪由于其与人类生理相似性,是异种移植的理想动物模型。我们使用分化的猪内皮细胞(pEC)作为一种治疗策略来恢复血管功能。分化的 pEC 在小鼠中形成了类似血管的结构,这将其与干细胞区分开来。MMPs 活性和迁移测定表明,分化的 pEC 具有血管生成潜力。管形成和 3D 球体发芽测定进一步证实了分化的 pEC 的血管生成表型。免疫荧光和免疫沉淀分析揭示了 Claudin 介导的紧密连接和 Connexin 43 介导的缝隙连接在人 EC 和分化的 pEC 之间。此外,在共培养条件下观察到小 RNA 从人 EC 到分化的 pEC 的运动。我们的研究结果表明,分化的 pEC 在体内的活力和血管生成潜能,并强调了人源和猪源 EC 之间细胞间通讯的潜力。这些结果表明,血管再生细胞治疗后移植的细胞有可能在体内实现细胞间通讯。