Yue Xinyang, Yao Yu-Xing, Zhang Jing, Yang Si-Yu, Hao Wei, Li Zeheng, Tang Cheng, Chen Yuanmao, Yan Chong, Zhang Qiang
Tsinghua Center for Green Chemical Engineering Electrification, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China.
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202413926. doi: 10.1002/anie.202413926. Epub 2024 Nov 7.
Contact prelithiation is widely used to compensate for the initial capacity loss of lithium-ion batteries (LIBs). However, the low utilization of the Li source, which suffers from the deteriorated contact interfaces, results in cycling degeneration. Herein, Li-Ag alloy-based artificial electron channels (AECs) are established in Li source/graphite anode contact interfaces to promote Li-source conversion. Due to the shielding effect of the Li-Ag alloy (50 at. % Li) on Li-ion diffusion, the dry-state interfacial corrosion is restricted. The unblocked electronic conduction across the AEC-involved interface not only facilitates the Li-source conversion but also accelerates the prelithiation kinetics during the wet-state process, resulting in an ultrahigh Li-source utilization (90.7 %). Implementing AEC-assisted prelithiation in a LiNiCoMnO pouch cell yields a 35.8 % increase in energy density and stable cycling over 600 cycles. This finding affords significant insights into the construction of an efficient prelithiation technology for the development of high-energy LIBs.
接触式预锂化被广泛用于补偿锂离子电池(LIBs)的初始容量损失。然而,锂源利用率低,且接触界面恶化,导致循环性能退化。在此,在锂源/石墨阳极接触界面中建立了基于锂 - 银合金的人工电子通道(AECs)以促进锂源转化。由于锂 - 银合金(50原子%Li)对锂离子扩散的屏蔽作用,限制了干态界面腐蚀。跨包含AEC的界面的畅通电子传导不仅促进了锂源转化,还加速了湿态过程中的预锂化动力学,从而实现了超高的锂源利用率(90.7%)。在锂镍钴锰软包电池中实施AEC辅助预锂化可使能量密度提高35.8%,并在600次循环中实现稳定循环。这一发现为开发高能LIBs的高效预锂化技术的构建提供了重要见解。