Suppr超能文献

高效且选择性的电化学将CO转化为甲酸:二硫化锡单层上单原子和双原子催化剂的第一性原理研究

Efficient and Selective Electrochemical CO to Formic Acid Conversion: A First-Principles Study of Single-Atom and Dual-Atom Catalysts on Tin Disulfide Monolayers.

作者信息

Chen Guanming, Buraschi Margherita, Al-Heidous Rashid, Bonakala Satyanarayana, El-Mellouhi Fedwa, Cucinotta Clotilde S

机构信息

Department of Chemistry, and Thomas Young Centre, Imperial College London, White City Campus, London W12 0BZ, U.K.

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, PoBox 34110, Doha, 2662, Qatar.

出版信息

J Phys Chem C Nanomater Interfaces. 2024 Sep 17;128(38):15861-15872. doi: 10.1021/acs.jpcc.4c02283. eCollection 2024 Sep 26.

Abstract

Electrochemical CO reduction reaction (CORR) is a sustainable approach to recycle CO and address climate issues but needs selective catalysts that operate at low electrode potentials. Single-atom catalysts (SACs) and dual-atom catalysts (DACs) have become increasingly popular due to their versatility, unique properties, and outstanding performances in electrocatalytic reactions. In this study, we used Density Functional Theory along with the computational hydrogen electrode methodology to study the stability and activity of SACs and DACs by adsorbing metal atoms onto SnS monolayers. With a focus on optimizing the selective conversion of CO to formic acid, our analysis of the thermodynamics of CORR reveals that the Sn-SAC catalyst can efficiently and selectively catalyze formic acid production, being characterized by the low theoretical limiting potentials of -0.29 V. The investigation of the catalysts stability suggests that structures with low metal coverage and isolated metal centers can be synthesized. Bader analysis of charge redistribution during CORR demonstrates that the SnS substrate primarily provides the electronic charges for the reduction of CO, highlighting the substrate's essential role in the catalysis, which is also confirmed by further electronic structure calculations.

摘要

电化学CO还原反应(CORR)是一种回收CO并解决气候问题的可持续方法,但需要在低电极电位下运行的选择性催化剂。单原子催化剂(SAC)和双原子催化剂(DAC)因其多功能性、独特性能以及在电催化反应中的出色表现而越来越受欢迎。在本研究中,我们使用密度泛函理论以及计算氢电极方法,通过将金属原子吸附到SnS单层上来研究SAC和DAC的稳定性和活性。以优化CO选择性转化为甲酸为重点,我们对CORR热力学的分析表明,Sn-SAC催化剂可以高效且选择性地催化甲酸生成,其特征在于理论极限电位低至-0.29 V。对催化剂稳定性的研究表明,可以合成具有低金属覆盖率和孤立金属中心的结构。CORR过程中电荷重新分布的Bader分析表明,SnS底物主要为CO的还原提供电子电荷,突出了底物在催化中的重要作用,这也通过进一步的电子结构计算得到了证实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3ee/11440595/6b03f787ce49/jp4c02283_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验