Suppr超能文献

低密度脂蛋白胆固醇计算的多个方程与直接匀相法的比较

Comparison of Multiple Equations for Low-Density Lipoprotein Cholesterol Calculation Against the Direct Homogeneous Method.

作者信息

Alsadig Rawaa E K, Morsi Adel N

机构信息

Department of Chemical Pathology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.

Department of Chemical Pathology, Faculty of Medical Laboratory Sciences, Mashreq University, Khartoum North, Sudan.

出版信息

J Lipid Atheroscler. 2024 Sep;13(3):348-357. doi: 10.12997/jla.2024.13.3.348. Epub 2024 Jul 15.

Abstract

OBJECTIVE

Several equations have been proposed as alternatives for the reference method of measuring low-density lipoprotein cholesterol (LDL-C). This study aimed to evaluate these alternatives in comparison to the homogeneous method and validate their clinical utility.

METHODS

Data on the lipid profiles of 1,006 Sudanese individuals were analyzed. The paired t-test was used to compare the results of direct and calculated LDL-C. Bland-Altman plots were used to demonstrate the differences between the measured and calculated LDL-C against the mean values. Linear regression was conducted, using the correlation coefficient () to quantify the relationship between methods. The bias between measured and calculated LDL-C was compared to the National Cholesterol Education Program Laboratory Standardization Panel criteria (i.e., accuracy within ±4% of expected values).

RESULTS

The Martin and Anandaraja equations showed no significant difference compared to directly measured LDL-C (>0.05). The DeLong equation indicated an insignificant difference only with a 99% confidence interval (>0.01). The Martin, DeLong, and Teerakanchana equations exhibited the smallest limits of agreement, with data points concentrated closely around the mean difference line. Linear regression analysis revealed strong positive correlations (>0.8) for most equations, except for the Ahmadi equation. The DeLong, Rao, and Martin equations demonstrated superior performance for LDL cutoff points (bias within ± 4%). The DeLong formula also showed superior performance at different lipid levels, closely followed by the Martin equation (bias within ±4%).

CONCLUSION

The DeLong and Martin equations outperformed others, such as the widely used Friedewald equation, in calculating LDL-C. Further validation studies are needed.

摘要

目的

已经提出了几个方程作为测量低密度脂蛋白胆固醇(LDL-C)参考方法的替代方案。本研究旨在将这些替代方案与匀相法进行比较评估,并验证其临床实用性。

方法

分析了1006名苏丹人的血脂谱数据。采用配对t检验比较直接测定和计算得出的LDL-C结果。使用Bland-Altman图展示实测LDL-C与计算得出的LDL-C相对于平均值的差异。进行线性回归分析,使用相关系数()量化各方法之间的关系。将实测LDL-C与计算得出的LDL-C之间的偏差与美国国家胆固醇教育计划实验室标准化小组的标准(即预期值±4%范围内的准确性)进行比较。

结果

Martin方程和Anandaraja方程与直接测定的LDL-C相比无显著差异(>0.05)。DeLong方程仅在99%置信区间时显示差异不显著(>0.01)。Martin方程、DeLong方程和Teerakanchana方程显示出最小的一致性界限,数据点紧密集中在平均差异线周围。线性回归分析显示,除Ahmadi方程外,大多数方程呈现强正相关(>0.8)。DeLong方程、Rao方程和Martin方程在LDL切点处表现出卓越性能(偏差在±4%以内)。DeLong公式在不同血脂水平下也表现出卓越性能,Martin方程紧随其后(偏差在±4%以内)。

结论

在计算LDL-C方面,DeLong方程和Martin方程优于其他方程,如广泛使用的Friedewald方程。需要进一步的验证研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c55/11439753/a46c33ebf80a/jla-13-348-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验