Zada Habib, Yu Jiafeng, Sun Jian
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, Dalian, 116023, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
ChemSusChem. 2025 Feb 16;18(4):e202401846. doi: 10.1002/cssc.202401846. Epub 2024 Nov 9.
Catalytic CO conversion to methanol is a promising way to extenuate the adverse effects of CO emission, global warming and energy shortage. Understanding the fundamental features of CO activation and hydrogenation at the molecular level is essential for carbon utilization and sustainable chemical production in the current climate crisis. This review explores the recent advances in understanding the design of catalysts with desired active sites, including single-atom, dual-atom, interface, defects/vacancies and promoters/dopants. We focused on the design of various catalytic systems to enhance their catalytic performances by stabilizing active metal in a catalyst, identifying the unique structure of active species, and engineering coordination environments of active sites. Mechanistic insights provided by advanced operando and in situ spectroscopies were also discussed. Moreover, the review highlights the key factors affecting active sites and reaction mechanisms, such as local environments, oxidation states, and metal-support interactions. By integrating recent advancements and relating knowledge gaps, this review aims to endow an inclusive overview of the field and guide future research toward more efficient and selective catalysts for CO hydrogenation to methanol.
将一氧化碳催化转化为甲醇是减轻一氧化碳排放、全球变暖和能源短缺等不利影响的一种很有前景的方法。在分子水平上理解一氧化碳活化和氢化的基本特征对于当前气候危机下的碳利用和可持续化学生产至关重要。本综述探讨了在理解具有所需活性位点的催化剂设计方面的最新进展,包括单原子、双原子、界面、缺陷/空位以及助剂/掺杂剂。我们重点关注了各种催化体系的设计,通过在催化剂中稳定活性金属、确定活性物种的独特结构以及设计活性位点的配位环境来提高其催化性能。还讨论了先进的原位和现场光谱学提供的机理见解。此外,本综述强调了影响活性位点和反应机理的关键因素,如局部环境、氧化态和金属-载体相互作用。通过整合近期进展并关联知识空白,本综述旨在对该领域进行全面概述,并指导未来的研究朝着开发更高效、更具选择性的一氧化碳加氢制甲醇催化剂的方向发展。