Chen Yuzhen, Zhang Chenchen, Yao Defu, Gazit Oz M, Zhong Ziyi
Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China.
Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel.
ACS Appl Mater Interfaces. 2025 Jan 15;17(2):3404-3417. doi: 10.1021/acsami.4c18818. Epub 2025 Jan 3.
Strong metal-support interactions (SMSIs) are essential for optimizing the performance of supported metal catalysts by tuning the metal-oxide interface structures. This study explores the hydrogenation of CO to methanol over Cu-supported catalysts, focusing on the synergistic effects of strong metal-support interaction (SMSI) and oxygen vacancies introduced by the CO treatment to the catalysts on the catalytic performance. Cu nanoparticles were immobilized on Mg-Al layered double oxide (LDO) supports and modified with nitrate ions to promote oxygen vacancy generation. Further calcination in a 15% CO/85% N atmosphere at various temperatures not only resulted in the formation of SMSI and electronic metal-support interaction (EMSI) between Cu and MgO, but also generated abundant oxygen vacancies on MgO. The optimized 7.5%Cu/MA-C700 catalyst (Cu supported on MgAl-LDO treated in CO at 700 °C) exhibited significantly higher methanol production and turnover frequency compared to the air-calcined counterparts. In situ FTIR studies further revealed that oxygen vacancies led to the formation of more monodentate formate species, thus enhancing methanol production. This research provides a novel approach to engineering the catalyst interface structure and the interaction between the active metal and the support, particularly for the irreducible metal oxide support, for efficient hydrogenation of CO to methanol.
强金属-载体相互作用(SMSIs)对于通过调节金属-氧化物界面结构来优化负载型金属催化剂的性能至关重要。本研究探索了在铜负载型催化剂上CO加氢制甲醇的反应,重点关注强金属-载体相互作用(SMSI)以及CO处理引入的氧空位对催化剂催化性能的协同效应。将铜纳米颗粒固定在Mg-Al层状双氧化物(LDO)载体上,并用硝酸根离子进行改性以促进氧空位的产生。在不同温度下于15%CO/85%N气氛中进一步煅烧,不仅导致了铜与氧化镁之间形成SMSI和电子金属-载体相互作用(EMSI),还在氧化镁上产生了大量氧空位。与空气煅烧的对应物相比,优化后的7.5%Cu/MA-C700催化剂(在700℃下用CO处理的负载在MgAl-LDO上的铜)表现出显著更高的甲醇产量和周转频率。原位傅里叶变换红外光谱研究进一步表明,氧空位导致形成更多的单齿甲酸根物种,从而提高了甲醇产量。本研究为设计催化剂界面结构以及活性金属与载体之间的相互作用提供了一种新方法,特别是对于不可还原的金属氧化物载体,以实现CO高效加氢制甲醇。