Suppr超能文献

一种使用具有优化卷积神经网络(CNN)特征和高效分类的热成像图像进行乳腺癌检测的轻量级方法。

A Lightweight Method for Breast Cancer Detection Using Thermography Images with Optimized CNN Feature and Efficient Classification.

作者信息

Nguyen Chi Thanh, Le Thi Thu Hong, Doan Quang Tu, Taniar David

机构信息

Institute of Information Technology, AMST, Hanoi, Vietnam.

Department of Computing Fundamental, FPT University, Hoa Lac High Tech Park, Hanoi, Vietnam.

出版信息

J Imaging Inform Med. 2025 Jun;38(3):1434-1451. doi: 10.1007/s10278-024-01269-6. Epub 2024 Oct 2.

Abstract

Breast cancer is a prominent cause of death among women worldwide. Infrared thermography, due to its cost-effectiveness and non-ionizing radiation, has emerged as a promising tool for early breast cancer diagnosis. This article presents a hybrid model approach for breast cancer detection using thermography images, designed to process and classify these images into healthy or cancerous categories, thus supporting disease diagnosis. Multiple pre-trained convolutional neural networks are employed for image feature extraction, and feature filter methods are proposed for feature selection, with diverse classifiers utilized for image classification. Evaluating the DRM-IR test set revealed that the combination of ResNet34, Chi-square ( ) filter, and SVM classifier demonstrated superior performance, achieving the highest accuracy at . Furthermore, the highest accuracy improvement obtained was when using the SVM classifier and Chi-square filter compared to regular convolutional neural networks. The results confirmed that the proposed method, with its high accuracy and lightweight model, outperforms state-of-the-art breast cancer detection from thermography image methods, making it a good choice for computer-aided diagnosis.

摘要

乳腺癌是全球女性死亡的一个主要原因。红外热成像技术因其成本效益和非电离辐射,已成为早期乳腺癌诊断的一种有前景的工具。本文提出了一种使用热成像图像进行乳腺癌检测的混合模型方法,旨在将这些图像处理并分类为健康或癌变类别,从而辅助疾病诊断。采用多个预训练的卷积神经网络进行图像特征提取,并提出特征过滤方法进行特征选择,使用多种分类器进行图像分类。对DRM-IR测试集的评估表明,ResNet34、卡方( )滤波器和支持向量机分类器的组合表现出卓越的性能,在 时达到最高准确率。此外,与常规卷积神经网络相比,使用支持向量机分类器和卡方滤波器时获得的最高准确率提升为 。结果证实,所提出的方法具有高精度和轻量级模型,优于热成像图像方法中最先进的乳腺癌检测方法,使其成为计算机辅助诊断的一个不错选择。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验