Obewhere Oghenetega Allen, Acurio-Cerda Karen, Sutradhar Sourav, Dike Moses, Keloth Rajesh, Dishari Shudipto Konika
Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Nebraska, USA.
Chem Commun (Camb). 2024 Nov 7;60(90):13114-13142. doi: 10.1039/d4cc03221g.
Proton exchange membrane fuel cells (PEMFCs), which use hydrogen as fuel, present an eco-friendly alternative to internal combustion engines (ICEs) for powering low-to-heavy-duty vehicles and various devices. Despite their promise, PEMFCs must meet strict cost, performance, and durability standards to reach their full potential. A key challenge lies in optimizing the electrode, where a thin ionomer layer is responsible for proton conduction and binding catalyst particles to the electrode. Enhancing ion transport within these sub-μm thick films is critical to improving the oxygen reduction reaction (ORR) at the cathodes of PEMFCs. For the past 15 years, our research has targeted this limitation through a comprehensive "Unravel - Engineer - Design" approach. We first unraveled the behavior of ionomers, gaining deeper insights into both the average and distributed proton conduction properties within sub-μm thick films and at interfaces that mimic catalyst binder layers. Next, we engineered ionomer-substrate interfaces to gain control over interfacial makeup and boost proton conductivity, essential for PEMFC efficiency. Finally, we designed novel nature-derived or nature-inspired, fluorine-free ionomers to tackle the ion transport limitations seen in state-of-the-art ionomers under thin-film confinement. Some of these ionomers even pave the way to address cost and sustainability challenges in PEMFC materials. This feature article highlights our contributions and their importance in advancing PEMFCs and other sustainable energy conversion and storage technologies.
质子交换膜燃料电池(PEMFC)以氢气为燃料,为轻型到重型车辆及各种设备提供动力,是内燃机的一种环保替代方案。尽管前景广阔,但PEMFC要充分发挥其潜力,必须满足严格的成本、性能和耐久性标准。一个关键挑战在于优化电极,其中一层薄的离聚物层负责质子传导并将催化剂颗粒与电极结合。增强这些亚微米厚薄膜内的离子传输对于改善PEMFC阴极的氧还原反应(ORR)至关重要。在过去的15年里,我们的研究通过一种全面的“揭示 - 设计 - 优化”方法来应对这一限制。我们首先揭示了离聚物的行为,更深入地了解了亚微米厚薄膜内以及模拟催化剂粘结层的界面处的平均和分布质子传导特性。接下来,我们设计了离聚物 - 基底界面,以控制界面组成并提高质子传导率,这对PEMFC效率至关重要。最后,我们设计了新型的天然衍生或受自然启发的无氟离聚物,以解决在薄膜限制条件下现有离聚物中存在的离子传输限制问题。其中一些离聚物甚至为解决PEMFC材料中的成本和可持续性挑战铺平了道路。这篇专题文章重点介绍了我们的贡献以及它们在推动PEMFC和其他可持续能源转换与存储技术方面的重要性。