Suppr超能文献

通过一种新颖的特征范式应对将外观线索纳入启发式多目标跟踪器的挑战。

Addressing Challenges of Incorporating Appearance Cues Into Heuristic Multi-Object Tracker via a Novel Feature Paradigm.

作者信息

Liu Chongwei, Li Haojie, Wang Zhihui, Xu Rui

出版信息

IEEE Trans Image Process. 2024;33:5727-5739. doi: 10.1109/TIP.2024.3468901. Epub 2024 Oct 9.

Abstract

In the field of Multi-Object Tracking (MOT), the incorporation of appearance cues into tracking-by-detection heuristic trackers using re-identification (ReID) features has posed limitations on its advancement. The existing ReID paradigm involves the extraction of coarse-grained object-level feature vectors from cropped objects at a fixed input size using a ReID model, and similarity computation through a simple normalized inner product. However, MOT requires fine-grained features from different object regions and more accurate similarity measurements to identify individuals, especially in the presence of occlusion. To address these limitations, we propose a novel feature paradigm. In this paradigm, we extract the feature map from the entire frame image to preserve object sizes and represent objects using a set of fine-grained features from different object regions. These features are sampled from adaptive patches within the object bounding box on the feature map to effectively capture local appearance cues. We introduce Mutual Ratio Similarity (MRS) to accurately measure the similarity of the most discriminative region between two objects based on the sampled patches, which proves effective in handling occlusion. Moreover, we propose absolute Intersection over Union (AIoU) to consider object sizes in feature cost computation. We integrate our paradigm with advanced motion techniques to develop a heuristic Motion-Feature joint multi-object tracker, MoFe. Within it, we reformulate the track state transition of tracklets to better model their life cycle, and firstly introduce a runtime recorder after MoFe to refine trajectories. Extensive experiments on five benchmarks, i.e., GMOT-40, BDD100k, DanceTrack, MOT17, and MOT20, demonstrate that MoFe achieves state-of-the-art performance in robustness and generalizability without any fine-tuning, and even surpasses the performance of fine-tuned ReID features.

摘要

在多目标跟踪(MOT)领域,将外观线索通过重新识别(ReID)特征纳入基于检测的启发式跟踪器对其发展造成了限制。现有的ReID范式包括使用ReID模型从固定输入大小的裁剪对象中提取粗粒度的对象级特征向量,并通过简单的归一化内积进行相似度计算。然而,MOT需要来自不同对象区域的细粒度特征和更准确的相似度测量来识别个体,尤其是在存在遮挡的情况下。为了解决这些限制,我们提出了一种新颖的特征范式。在这种范式中,我们从整个帧图像中提取特征图以保留对象大小,并使用来自不同对象区域的一组细粒度特征来表示对象。这些特征是从特征图上对象边界框内的自适应补丁中采样的,以有效捕获局部外观线索。我们引入互比相似度(MRS),基于采样补丁准确测量两个对象之间最具判别力区域的相似度,这在处理遮挡方面证明是有效的。此外,我们提出绝对交并比(AIoU),在特征代价计算中考虑对象大小。我们将我们的范式与先进的运动技术相结合,开发了一种启发式的运动-特征联合多目标跟踪器MoFe。在其中,我们重新制定了轨迹片段的轨迹状态转移,以更好地对其生命周期进行建模,并首先在MoFe之后引入一个运行时记录器来优化轨迹。在五个基准测试(即GMOT-40、BDD100k、DanceTrack、MOT17和MOT20)上进行的大量实验表明,MoFe在无需任何微调的情况下,在鲁棒性和通用性方面达到了当前的最佳性能,甚至超过了微调后的ReID特征的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验