Suppr超能文献

欧洲城市行人2.0:一个庞大且多样的交通行人数据集。

EuroCity Persons 2.0: A Large and Diverse Dataset of Persons in Traffic.

作者信息

Krebs Sebastian, Braun Markus, Gavrila Dariu M

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10929-10943. doi: 10.1109/TPAMI.2024.3471170. Epub 2024 Nov 6.

Abstract

We present the EuroCity Persons (ECP) 2.0 dataset, a novel image dataset for person detection, tracking and prediction in traffic. The dataset was collected on-board a vehicle driving through 29 cities in 11 European countries. It contains more than 250K unique person trajectories, in more than 2.0M images and comes with a size of 11 TB. ECP2.0 is about one order of magnitude larger than previous state-of-the-art person datasets in automotive context. It offers remarkable diversity in terms of geographical coverage, time of day, weather and seasons. We discuss the novel semi-supervised approach that was used to generate the temporally dense pseudo ground-truth (i.e., 2D bounding boxes, 3D person locations) from sparse, manual annotations at keyframes. Our approach leverages auxiliary LiDAR data for 3D uplifting and vehicle inertial sensing for ego-motion compensation. It incorporates keyframe information in a three-stage approach (tracklet generation, tracklet merging into tracks, track smoothing) for obtaining accurate person trajectories. We validate our pseudo ground-truth generation approach in ablation studies, and show that it significantly outperforms existing methods. Furthermore, we demonstrate its benefits for training and testing of state-of-the-art tracking methods. Our approach provides a speed-up factor of about 34 compared to frame-wise manual annotation. The ECP2.0 dataset is made freely available for non-commercial research use.

摘要

我们展示了欧洲城市行人(ECP)2.0数据集,这是一个用于交通中行人检测、跟踪和预测的新型图像数据集。该数据集是在一辆穿越11个欧洲国家29个城市的车辆上收集的。它包含超过25万个独特的行人轨迹,分布在超过200万张图像中,大小为11TB。在汽车领域,ECP2.0比之前的最先进行人数据集大一个数量级左右。它在地理覆盖范围、一天中的时间、天气和季节方面具有显著的多样性。我们讨论了一种新颖的半监督方法,该方法用于从关键帧处的稀疏手动注释生成时间密集的伪地面真值(即2D边界框、3D行人位置)。我们的方法利用辅助激光雷达数据进行3D提升,并利用车辆惯性传感进行自我运动补偿。它通过一种三阶段方法(轨迹段生成、轨迹段合并为轨迹、轨迹平滑)合并关键帧信息,以获得准确的行人轨迹。我们在消融研究中验证了我们的伪地面真值生成方法,并表明它明显优于现有方法。此外,我们展示了它在训练和测试最先进跟踪方法方面的优势。与逐帧手动注释相比,我们的方法提供了约34倍的加速因子。ECP2.0数据集可免费用于非商业研究用途。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验