Wang Tianlong, Zhu Yinghao, Wang Zixiang, Tang Wen, Zhao Xinju, Wang Tao, Wang Yasha, Gao Junyi, Ma Liantao, Wang Ling
Peking University, Beijing, China.
Department of Nephrology Peking University Third Hospital, Beijing, China.
STAR Protoc. 2024 Dec 20;5(4):103335. doi: 10.1016/j.xpro.2024.103335. Epub 2024 Oct 1.
The absence of standardized protocols for integrating end-stage renal disease patient data into AI models has constrained the potential of AI in enhancing patient care. Here, we present a protocol for processing electronic medical records from 1,336 peritoneal dialysis patients with more than 10,000 follow-up records. We describe steps for environment setup and transforming records into analyzable formats. We then detail procedures for developing a directly usable dataset for training AI models to predict one-year all-cause mortality risk. For complete details on the use and execution of this protocol, please refer to Ma et al..
缺乏将终末期肾病患者数据整合到人工智能模型中的标准化方案,限制了人工智能在改善患者护理方面的潜力。在此,我们提出了一种处理1336例腹膜透析患者电子病历的方案,这些患者有超过10000条随访记录。我们描述了环境设置以及将记录转换为可分析格式的步骤。然后,我们详细说明了开发一个直接可用的数据集的程序,该数据集用于训练人工智能模型以预测一年全因死亡风险。有关本方案使用和执行的完整详细信息,请参阅Ma等人的研究。